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ABSTRACT

In this paper the simulation and assessment @l

is described. Thisool is able to simulate the performance
of parallel programs using the message passing library
PVM for communication, run on arbitrary parallelan
chines, irtluding PC clustersCLUE redirects calls to PVM
to its own functions, providing an additional laybetween
an applicéion and PVM. The simulation is driven by the
application execution itself. The applicability 6fUE is

Simulation tries to bridge the gap between analytical
models and etensive tests on existing computer platforms.
When simulating the execution of parallel programs, in
principle the performance of any program or program
model running on arbitrary parallel computers may ba-an
lyzed.

In this paper, the simulation and assesent toolCLUE
(cluster evaluator) is introduced, which is able to simulate
the performance of message passing programs executed on
parallel computersCLUE has been specifically designed to
simulate program runs on clusters of workstations or PCs,
yetCLUE may also simulate other parallel computers like

demonstrated in three case studies, where (i) different loadparallel supercomputers.

predictors are compared, and (ii) the performance of ama
ter-slaveparalelization and (iii) subroutines of the widely
used Scalapack linear algebra package are simulated.

INTRODUCTION

One important application oELUE is the simulation of
the performance of parallel programs run on clusters of
SMPsa priori, i.e., before running them on the real hard
ware. Thisway, a potential cluster customer may simulate
the performance impact of certain configuration decisions

The increasing number of available parallel computers before actually buying the cluster. The idea behind this ap
or clusters of workstations, interconnected with high speed plication is thereforéo adapt the hardware to already ex

networks, has createdreeed for efficient parallel software.
Developing such is difficult due to the additional communi
cation overhead often necessary. Factors influencing the

isting softwareHowever CLUE is not intended to guide
hardware development in the narrow sense.
Another application ofCLUE is the design anduning

efficiency are, for instance, the problem size, the percentagef parallel programsrun on parallel computers. In thigpa

of sequential code, the speed of tl@mnunication system,
the communication/computation ratio and the number and
type of processors used. Parallel programs running effi
ciently on one parallel computer might be very inefficient
on others.

There are several ways of comparing algorithms for
parallel computers, all suffering from particular drawbacks.
Analytical models are very difficult to create, might be
based on simplifying assumptions and often cannot catch
the possibly complicated structure of the simulated-env
ronment or the parallel progms.

Comparison by executing the programs is restricted to
available parallel computers only. Interesting properties
like the program behavior on various platforms, intareo
nected with different networks, cannot be obtained-Fu
thermore, the execution ofypallel programs as part of an

plication, the user o€LUE may test the performance of his
program on hypothtécal platforms, evaluating various
strategies of parallelization. In this case, thaftware is
adapted to hardwareThis adaptation may take placerdu
ing software development, before actuallyghasing the
target computing platform.

CLUE has been devebed to simulate the execution of
real programs on arbitrary parallel computer configur
tions. AsMissPvM [Kvasnicka and Ueberhuber 1997], the
main part of CLUE, provides a virtual layer between the
applicaion program and PVM, the application program
mug use the message passing library PVM. It is, however,
possible to simulate the performance of other message pas
ing libraries like MPI by using the PVM version. Thecse
ond part ofCLUE, the Workstation User Simlator (WUS)
has been ceed to additionajl simulate the effect of war

extensive study to gain insight into program characteristics station users starting competing processeintait also

might use up large amounts of CPU time, thus consuming
computing time possibly needed otherwise.

possible to run statistical models instead of real code, thus
speeding up simulation runs by several orders of magn
tude.



RELATED WORK

In the past, several attempts leakieen made to sim
late the performance of parallel programsnhap [Fer
scha:1996], for example, allows predicting the performanc
of parallel programs by specifying code fragments only.
The PVM Simulator PS [Aversa et al.1998] follows am-a
proach similarto ours, accepting full PVM programs or

program prototypes. PS, however, does not use execution

driven simulation but produces trace files describing the
communcation pattern of the application under observ
tion. These trace files then drive the simudat kernel to
derive simuldion results. Tau [Sheehan et al. 1999] is a
performance exapolation tool that also collects retime
trace information of parallel programs written in pC++,
which is later used to drive the traaiiven simulation a-
gine. The same tracériven approach is used in Dip f-
barta et al. 1996].

In general, tracadriven approaches assume that the

communication patterns are fixed and do not depend on the

run-time situation. This assumption is valid, for example,
for most routines fom the weltknown linear algebraid
brary ScaALAPACK [Blackford et al. 1997]. In cases where
the communication depends on the ftime situation,
however, for example when simulating the effect of load
balancing mechanisms, this approach cannot be used, in
contrast to execution driven simulation.

Execution driven simulators include, for example, the
simulation platform SImOS [Rosenblum et al. 1997]. The
simulation kernels of this platform allow the simulation of
various processor models and hardware featwitfsvary-
ing degree of complexity. Users of SImOS simply start the
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changed (with a minor exception), but only has to be r
compiled and linked to th&liss-pvm library. If WUS is

used, the original source code must be changed to include
calls to WUS. Once starte@LUE will be driven by calls of
the application program and willdvance its virtual time
according to the CPU time consumed by the application
program ad the time used for inteprocess commurée

tion.

Generation of computing time
of application program

T
Application / Application Model
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Figure 1. Structure ofCLUE.

CLUE has already been applied to different topics:
Given a fixed program, find the optimum hardware
corfiguration that yields the highest performamtor

the program.

Given a fixed program and a certain budget limit, find
the optimum hardware that can be afforded.

Given a set of hardware platforms, evaluate the pe
formance of a certain parallelization strategy.
Evaluate different dynamic load balangistrategies.

MISS-PVM
Miss-pvM [Kvasnicka and Ueberhuber 1998]imple-

>

>

binary executable of their code, which then drives the simu mented as a layer between the apation program and the
lator. This approach relies on the availability of a processormessage passing library Parallefritial Machine (PVM).
model for the processor family the executable was compiledhe virtual layer for PVM rediects all calls to PVM to

for. Other parallel programming tools like Aims [Yan etal. their intemal counterparts. Once being calléd|ss-Pvm
1995] observe real program executions and provide sephismeasures the CPU time consumed by the application pr

ticated tools for postnortem trace file analysis. In this ap
proach, only the performance of parallel programs run on
available platforms can bevaluated.

THE CLUSTER EVALUATOR CLUE

The structure of the simulation and assessment tool
CLUE can be seen ifrigurel. CLUE is driven by an applia-
tion program containing the original code or an application
model holding only the ade skeleton, like calls for rse
sage passing or calls talgance the simulation time to
simulate the execution of CPU or I/O extensive codg-fra
ments.CLUE is thusexecution drivenThe application po-
gram or model calls functions provided by either WUS
(Workstation User Simulator) andiss-pvM (Machine h-
dependent Simulation System for PVM 3). If WUS is not
used, then the original source code does not have to be

gram since its last call to PVM.
This time is then added to the internallgaintained
virtual time After having performed this taskliss-pvm
will eventually call PVM functions to perform a similar
(but not identical) work. For example, sending a message
from one process to another will result in severatual
messagesent between the instances of the virtual layer.
As a result, the simulator user may obsethe sinu-
lated virtual time as well as the output trace files, contai
ing information about all sent messages. These trace files
must be preprocessed and may be used for post mortem
visualization afterwards. This scheme has two major adva
tages ovenormal trace file writing: the virtual layer for
PVM (i) uses its owrsimulatedsystem timéi.e., the virtual
time) and (ii) makes airtual machineavailable to the user.



Machine @rameters are read from a configuration file at
program start. The configration parameters may also be
changed dynanaally during the program execution sliig
Miss-PvM it is possible to compare the performance afpr
grams run on computers with different communicatian |
tency and computing speed. WUS enables to additionally
create wokstation background load of arbitrary complexity.
Time-measurements of different load balancing strategies
can be made quickly and enable the determination of the
optimum strategy for certain architectures.

Using MISS-PVM
PVM is a software systelinking a network of heter-

geneous computers in such a way that the user may assumFhi

the existence of one single parallel computer,¥hreual
parallel machine It provides message passing and process
control routines for tasks running on any of the cautgrs
being part of the virtual machine. User processes are con
nected by TCP to a PVYM daemon running on thea-m
chine. When sending a message to another process, the
sender will pass the message to its PVM daemon, which
will transmit the data to the PVM @emon running on the
receiver's canputer. This daemon will then pass on the data
to the receiing process.

Application Program Application Program

Virtual Layer

pvmV_recv()

pvmV_send()

pvm_send() pvm_recv()
libpvm3 libpvm3
TCP TCP
j UDP ﬁ
pvmd pvmd
Network

Figure 2. Virtual layer for PVM.

User programs call PVM subroutines in order to send
messages or to create and terminatecesses on any me
ber of the virtual machine. PVM provides a uniform inte
face to user programs by hiding different implementations
and features of the various flavors of Unix and Windows. In
this way a user program may be run on a variety of diffe
entcomputer systems without modification.

In Figure2 a new level between the user program and
PVM is added, theirtual layer for PVM. This layer po-
vides the same interface to the user program as PVM does,
itself containing no mackme-dependent code. Thus, the-vi
tual layer may be used on many differerachines.

When using the virtual layer in addition to PVM, the
simulator user is providedrtual time, virtual machines
with arbitrary characteristics anoutput generatiorfor
graphical post mortem visualization. The user programs as
well as the PVM level remain unchanged. The only diffe
ence is that an include file redirects PVM calls to their-vi
tual equivalents.

As a visualization program, ParaGraph may be used.
s graphi@l tool provides several animated windows,
which are, to a great extent, sadkplanatory [Tomas and
Ueberhuber 1994, Heath 1993].

Virtual Time
The virtual layer for PVM uses an internal time that is
based on three components:
» Computation timeis the CPU ime consumed by ex
cuting the user programs. This time is measured by
calling operating system calls.

» Communication timeis calculated using the config
ration parameters of the virtual machine.
» Waiting time is simulated as the time a process waits

for the arrival of messages.
These three components are added to resuhérvir-
tual timeof each user process.

Virtual Machines

Virtual machines are defined in a file that is read at the
start of the simulation. The first line of this file contains the
parameters of the computer used for the master program
and as default for all programs started without an explicit
machine name or host type given. In the other linesneo
ments (beginning with the symbol ‘#’), or additionalam
chine or host type specificatis can be put. For each line
possible parameters are:

» Nameof the machine or host type. The machine can
either exist in reality or can bewrtual machine

» Performance factor. This is a floatingpoint multi-
plier p for calculating the computation time.

» Initialization Delay. This is the time needed for
pvm_spawn(), as seen by the spawned program.

» Spawn Delay.This is the time spent ipvm_spawn().

» Send Delay.This is the time used for sending a se

sage usinggvm_send() or pvm_mcast(). This time
containspacking the message, resolving the address of
the host and starting the transmission (as far as the
serding process is involved). The actual send delay is
interpolated linearly between given points.



» Receive DelayThis is the time used in calling theer
ceve routinespvm_rcv(), pvm_nrecv() and
pvm_probe().

» Transmission Delay.This is the time used to transfer
a message minus the send delay. It is typically agiec
wise linear model.

» Packing Delay.This is the time used to pack the e

sage into the PVM seahbuffer.
Send and transmission delay may be specified for any

pair of hosts, they may also define sending and transmitting[ime
messages from one host to itself, in case multiprocessor m

chines are to be modelefigure 3 shows the assued
model for the send and transmission delay.

Program/Model 1 Program/Model 2

pvm_recv()
pvm_send()_Y
send time
transmission
time
recv time

virtual time
Figure 3. Communication model.

If the actual performance model turns out to berof i
sufficient accuracy, it can easily be modified in the config
ration file. A recompilation of thesimulated program is not
required.

Development Process

In order to simulate the performance of parallebpr
grams run on a set of hardware platforms, the following
steps must be carried out:

1. The parallel program using PVM must be developed.

2. Inall source fles, the PVM include file must be
changed to thdiss-pPvMm include file (not in Fortran).

3. The Makefile must be changed to link tiviss-Pvm
library to the executable.

4. For each hardware configuration to simulate, aco

figuration file has to be created. Thmrameters for the
computational speed and the network properties may
be either derived by measuring existing hardwase, e
trapolating from known parameters, or by using &

studies described latarere derived by taking mea
urements with standard benchmarking andcphy
written programs.

5. Then the source files must be recompiled and linked to
theMiss-PvM library.
6. The simulation is then executed by starting the PVM

program as in a normal progranun.

Distributed Simulation Protocol

In order to execute all events according to their virtual

, Miss-PVM uses a conservative protocol for distributed
discrete event simulation based on an extra process called
MISSdaemanThe daemon keeps an interriat of all run-
ning PVM processes. Upon receiving messages, the da
mon updates its process list by calling the virtual version of
pvm_tasks(), which returns a list of all processes with the
exception of the MISSdaemon itself. Each entry in this list
can have one of the following states:

» Unknown. The process is believed to do work.

» Waiting for line. The process has callggym_send().

» Waiting for non-blocking receive.The process has
calledpvm_probe() or pvm_nrecv().

» Blocked receive.The process has callede Miss-Pvm
version ofpvm_recv() and is waiting for messages.

» Deleted.In this case, the process is removed from the

process list and is added to a deletion list.

Once the states of all processes are known, the next
event is chosen from the event listdhis executed. This
may either be a sender waiting for the allowance to-pr
ceed, or the delivery of a message to a receiver. In the first
case, the sender is simply notified by a virtual message, in
the latter case, a virtual message is sent to the recaioe
taining information about the message size and the sender
PID. Upon reception of this message, the sender of a mes

sage may proceed whereas the message receiver unlocks the

caresponding data waiting in an internal buffer and pre
tends to having rezived the data at the respective virtual
time. The protocol needs a total of four virtual layersne
sages with fixed size and one user data message afambi
size. Using the MISSdaemon, the order of messages at the
receiver's end is preserved.

THE WORK STATION USER SIMULATOR

The Workstation User Simulator (WUS) [Hlavacs and
Ueberhuber 1998] is the second parafie. WUS sinu-
lates the generation of competing processes, runningtin pa
allel on interactively used workstation clusters, and taking
away CPltycles there. Processes can be generated-by u
ing fixed arrival and departure rates, variable arrival and
depature rates provided by trace files [Calzarossa and
Serazzi 1985], trace files of real processes [Zhou 1986] and

specified information. The parameters used in the caseuser behavior graphs [Calzarasand Serazzi 1986].



By constructing stochastic models of real paraliel a ration of each timeslice on an x8ecompatible computer
plications or running real applications, different load-ba running Linux is 10 ms).
ancing schemes can be simulated and compared with each Using WUS

other. Itis |mpc_thant Fo note that the competing processes WUS mimics a UNIX computerfigure5). User mal-
are notstarted in reality, but are only represented by list . : .
els produce workload irgy trace files of real user sgisns,

entries in thevirtual CPU (VCPU) queue of WUS. The Poisson aiival processes with fixed and variable arrival
WUS VCPU is, however, tightly linked to tHdiss-PvMm P :
and departure rates, and usehhvior graphs,.

virtual time. Whenever a WUS process consumes VCPU
time, WUS ircreases th#&liss-pvm virtual time accod-
ingly. On the other hand, if an application consumes real
CPU time letween two adjacent calls tdiss-PvMm, MiSs
PVM activates WUS where the consumed CPU time now
must compete for the VCPU with other WUS processes.
Figure4 shows such a sequence of calls.

CPU request from
the application mode|

Computer

Window
Process

Application

Constant| | Variable UBG

Tracefile Rates Rates

‘ PVM3 call H MISS-PVM HPVM3‘

Figure 5. WUS structure.

Designers of parallgorograms wishing to use WUS to
Consumen CPU seconds test load balancing strategies first have to sample statistical
data of the CPU requests of their real parallel applications.
Using this data, a statistical application model has to be
VM3 call WUS ](c:reate_d. An application model prograframe looks like the
ollowing example.
do communication or initialization
ﬁ PVM3 comp = new Computer( Workload model );
while (Loop ) {
runtime = GetRandomRuntime();
Figure 4. Real application consuming CPU time comp->RunProcess( runtime );
loadavg = comp->LoadAverage(n);
do communication or load bal ancing

MISS-PVM

First, the real application calls a PVM function, which
is replaced by the accordingiss-pvMm call. Miss-PvM man-
ages the virtual time and communicateih other pra-

. ) collect results
esses by means of virtual layer messages using PVM. Also,

Miss-pvMm stores the amount of CPU time this process has The Unix Load Average

consumed so far. The real application consumesal CPU One important application dfLUE is the development
seconds and, in order to do some communicatiorally and assessment of dynamic load balancing strategies. Such
invokes a M call, again being replaced by the@rding strategies observe the rtime behavior of parallel gr
Miss-pvM call. Then real seconds are modified biss grams and identify overloaded and undaextied processors.
PvM according to the state of WUS and the virtual time is A processor overload may occur, (i) if one processor has
increased. been assigned more work than others (this can be the case

if the amount of work necessary to compute the result is not
known in advance), or (ii) if workstation users interactively
start competing processes on one or more workstations.
The load balancing strategy thus must react to load
changes and may decide to transmit work from one @oce
sor to another. For measuring case (i), usually the Unix
load average is used, i.e., thepmnentially smoothed
length of the processor queue, holding all currently running

processes. The Unix load averagAQ is defined to be

WUS Scheduling

The application model calls WUS functions to state
that it wishes tdbe grantech VCPU seconds. WUS then
schelules its VCPU to all running WUS processesusing
priority schedulingas implemented in the Linux kernel,
driven by the standard UNIX nice levels.

Like in the processor sharingjueuing discipline [A-
len 1990],it is assumed that the timslices scheduled to
each process are infinitely small (in contrast, e. g., the d



Xea = BX; + (1= B)X, )
where X, is the number of running processes atét.
The load average depends ¢gh1[0,]] , the exponential

smoohing constant. It defines, how much of the past
should be ncluded into the current load estimate. If writing

B=N/(N+1), then )A(t+l may also ke interpreted as an

estimate for the arithmetic mean of the ld$tobservations
Xi5,1 =0LK ,N -1 [Schlittgen and Streitberg 1995]. By

setting B = % =0.984 and calculating X; every second,

X; thusmay be interpreted as the arithmetic mean number 3

of processes run in the last 60 seconds. Unix traditionally

input dataf, a andb in an unpredictable way and the
needed CPU time for obtaining (5) is not known a priori.
This algorithm is difficult to parallelize, as it is intrinsically
sequential. Also, if a large number of independent cabzul
tions for (2) are to be perforred in parallel, a distribution
of the tasksa priori is difficult, as the CPU requirements of
each task is unknown and thus some processors might get
overloaded while others might soon be idle because their
tasks need only little CPU time.

For the integraml f(x), three basic integrand classes
were chosen:
» Oscillating integrands (7 families).
Integrands with singularities, peaks or discontinuities
(8 families).

calculates such estimates for the last 60 seconds, the last 5% Mixture families (6 families).

minutes and the last 15 minutes. WUS allows the congut
tion of such load averagestfany N.

CASE STUDY: PARALLEL INTEGRATION

In order to demonstrate the applicability @i.ue and
to validate the simulation accuracy, several case studies
have been conducted.
In the first case study, a global bag of tasks is defined
to contain 10,000 defiite integrals
b
I[f,ab] =] f(x)dx
a
for given integrand<(x) and given interval boundariea
andb. This workload is then to be computed in parallel on
workstations being interconnected by Fast Ethernet. The
integrals are to be calculated usiragglobally adaptive
automatic ntegration algorithm [Piessens et al. 1983]. This
algorithm computes an approximation

&)

Qf,abl=I[f,ahb] 3)
and an error estimate

E[ f,a,b] = e[f,a,n :|Q[f,a,b] —I[f,a,b]| 4)
such that

E[f,ab]sr (5)

for a given eror tolerancer . The estimatesQ[ f,a,b] and
E[ f,a,b] are calculated by evaluatinifx) at N points and
applying a secalledintegration formula[Krommer and
Ueberhuber 1994], being a weighted sum of timegrand
values. Then, if (5) does not hold, the original intervadb
is subdivided into two intervalga,(a+b)/2] and
[(a+b)/2b], and estimates (3) and (4) are again caic
lated for both subintervals. If the sum of the two errest-
mates still does not fulfill (5), the interval with the largest
error estimate is chosen and further subdivided. Thigpr
cedure, resulting in a possibly large number of subintervals
and therefore integrand evaluations thus depends on the

Each integrand family depends on a parameter
a 0[0]] defining the severity of the integration problem

(2). The highera is, the more integrand evaluations and
thus CPU time is needed to obtain (5). An example for an
oscillatory family is given by

am

J xe™ sin0Qr + x) +1dx.

0

Figure6 shows the number of integrand evaluations for
family (6) needed to fulfill the error requirement (5). The
results are given for differerit-point integration formulas.

(6)

Function Evaluations

1600 - T T T
15-point formula
1400 = 31-point formula ------
1200 -  61-point formula ------ .
1000 -
800 -
600 -
400
200 - o
0 e A A A
0 0.2 0.4 0.6 0.8 1
8%
Figure 6. Function evaluations needéor oscillating
integrands.

A complete definition of the integrand families as well
as a mathematical explanation of the curve shapes can be
found in [Hlavacs 2000].

Each of the 10,000 tasks is defined by choosing ore in
tegrand family and one particulag 0[0,]] at random, de

scribing the computation of exactly one definite integral. A
central master manages the bag of tasks.

The program has first been executed on a network of
workstations (NOW) consisting of five Sun workstations



with Sparc and UltraSparc processors and running the Sun
Solaris operating system. These workstations were co
nected by a switched Fast Ethernetwerk yielding 100
Mbit/s bandwidth. Additionally, the prgram has been
simulated with CLUE.

Figure7 shows the measured rttimes and the sima+
tion results. It can be seen that in this scenario, thetacc
racy of CLUE is very high. The experiment also shows that
with more than four workstations, no more spegulis do-
served.

Run Time
140 T T T

120
100
80

s
60
40
20

0 1 1 1
0 1 3

Number of workers
Figure 7. Measured run time vs. simulated run time (in

seconds) on the Sun NOW. Task message size is 10 KB.

T
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Simulated

The same experiment has been repeated on tlee Be
wulf cluster of SMPs maintained by the Institute for PhRys
cal and Theoretical Chemistry diie Vienna University of
Techndogy, described in a later case study. This cluster
consists of five PCs containing two processors ekajure
8 shows the simulation results. Again the simulation result

yields high &curacy.
Run Time

90 T T T T T T T T T
Measured ——

Simulated
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Figure 8. Measured run time vs. simulated run time (in

seconds). Task message size is 500 KB.
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CASE STUDY: LOAD INDEX EVALUATION

In this case study, the WUS load average simulation is
used to find an optimumg for predicting the future wd¢-

station workload. One obvious question is, whighis best

to predict the future workload of a workstation, and thus
the time it takes to compute a task under a given workload.

Sampled Workload

In order to obtain realistic background workload, dra
ing programs were started on one particular network of
workstations being maintained at the Vienna University of
Technology. The observed workstations contained DEC
Alpha processors under the OSFdperating system. The
workload was sampled during the period from March 15th,
1998 to May 13th, 1998. For all visible Unix processes, the
sampled workload parameters were;
Time
Process ID (PID)
Parent PID
CPU time consumed so far
CPU time consumed by athildren
Executable name
Figure9 shows a typical workstation workload as has
been observed on a Monday. It can be seen, how the time of
day influences the arrival of processes, thus reflecting the
workload that is generated by intetive users. The wér
load trace files indicate large fluctuations of workloaddu
ing the day. Especially the faster machines are more likely

to get very high workloads.
Process Arrivals per Minute
6 T T T

VVVVVYV

5

1 ‘Il.
1 1
12:00 18:00
Time of day
Figure 9. Arrival of processes per minute on onerpa
ticular workstation day.

0 |
0:00 6:00 24:00

Simulation Scenario

For evaluating different load averages, the following
simulation scenario was chosen: The workload of one
workstation day was provided to WUS, which would use
this data to create virtual processes. Beginning aetima
process consuming[1,60] CPU seconds was thenrco



tinuously created. At start time, the load average (1) was
used to pedict the actual rurtime of this process under the
observed load situation. After the process consumed the
CPU ime, the prediction error, i.e., the difference between
the predicted and the actual rutime was computed. Then,
another process consumig@PU seconds was immied

ately created.

Simulation Results

Figure 10 shows the simulation resdts. As a measure
for the prediction quality, the figures show the mean error
of all predictions for one particular tuplég,s) . It can be
seen that when averaging over the whole day and focpro

esses consuming only a few CPU seconds jtbst predi-
tion is given by 8 =0, which according to (1) denotes the

The Vienna Cluster.

The first PC cluster of the research project AURORA
(http://www.vcpc.univie.ac.at/aurora/) was built for ceop
eration between the Institutes fépplied and Numerical
Mathematics and Physical and Theoretical Chemistry, both
part of the Vienna University of Technology. It consists of
one master and five dual Pentium Il slaves using Fast
Ethernet communication. The master is used as file and net
server and does all the compilation work.

Figure 11 shows the send and transmission timés o
served on the Vienna cluster. Both sender and receiver run
on the same node, thus the message is not sent over the ne
work. Also, the piecewise linear model used for the sieaul
tion is shown as well. These measurements were conducted
by running specially written timing software, using both

actual number of running processes. As processes consumBVM and ordinary UDP packets for time synchronization.

more CPU seconds, higher values gfproduce bettera-

sults.

Mean prediction error

0.08
0.07

7

0.05 nmézV
b

0. 010

Figure 10. Simulation results using the workload of
one particular workstation from 00:00 to 24:00.

CASE STUDY: SCALAPACK ON PC CLUSTERS

In this case study it is demonstrated how to @&E
for simulating the performance of standard software run on
PC dusters. A PC cluster typically consists fof-the-shelf

/’/'
Ty
el ﬁ?%%yﬁéﬂ%%%¢%ﬁﬂﬂzfgy

20 CPU seconds

Additionally, for the case of sendinmessages from
one sender to several receivers at the same time, contention
has been observed that increases both the send anst tran
mission time.

Communication Time

10_1 F o T T T T T
Measured Send Time —_
Modelled Send Time — ===--

1072 - Measured Transmission Time *----- T

Modelled Transmission Time -
S 1073 - x‘(, '\'\1"""‘.‘:;"',‘!’!
Pt
————————— J-.\"rw.-
1074 :—----\-'r.-.—.'.—.'.-.'.'.' ......... 1
1075 L 1 1 1 1 |
102 10t 1 100 102 10

Message Size (KB)

Figure 11 Send and transmission time for tha&hna
cluster. Sender and receivare on the same node.

The Aachen Cluster

PCs connected with each other over standard Fast Ethernet  The PC cluster Siemens hpcLine consists of 16 dual
or some gigabit class network, each PC containing one, twgprocessor boards using 400 MHz Pentium Il. The nodes

or four Intel compatible processors working in symmetric
shared memory (SMP) medPC clusters running the
Linux operating system are often call@#bowulfclusters
and have become popular in the last few years due to the

communicate either via switched Fast Ethernet or SCI
(Scahble Coherent Interface). The computational factbr
nodes of the Aachen cluster has been measured to be 0.91
relative to the Vienna cluster, where simulation runs have

fact that they deliver high computing power at a reasonablebeen caried out. Additionally, the SCI network was only

price. Due to the availability of a large number offaifent
PC hardware components, it is difficult to decide which
cluster configuation yields the best performance for a
given application. Simulating different cluster configur
tions before deciding to buy one particular may aid this
decision process. Ihe carried out experiments, twoesp
cific PC cluster configuations have been investigated.

available for the MPI version dLAcs. Thus, the comm-
nication pprameters andhe performance of the real runs
were collected for the MPI version 8f.Acs, whereas the
simulation runs were still carried out on the Vienna cluster
using the PVM version of th8LAcs. Communition
models for the Aachen cluster SCI network can be foimd
[Hlavacs 2000].



Simulated Software

The standard parallel software chosen for simulation
consists of subroutines 8EALAPACK [Blackford et al.
1997], the parallel version dfAPACK [Anderson et al.
1999], the wellknown library for linear algebra. Both
LAPACK and ScALAPACK are based on calls to theasic
linear algebra subprogramgBLAS), their parallel version
being calledPBLAs. Both PBLAS and SCALAPACK use the
basic linear algebra communication subrouting8LACS)
for communication, théLACS itself being based on PVM
or MPI.

ThreeScALAPACK routines were used to demonstrate
the usefulness and reliability @LUE:

» Matrix -Matrix Multiplication. The routinePBLAS/
pdgemmis used to multiply two matrices.

» Cholesky Factorization.The routineSCALAPACK/
pdpotrf is used to compute the Chasky factoriza
tion of a symmetric, positive definite atrix.

» LU Factorization. The routineSCALAACK/

pdgetrf is used to compute the Lfactorization of a

general matrix.

In this case study matrix sizes have been set t
2000x 2000.

Simulation Results

For the real runs, the PVM version &CALAPACK and
PBLAS were used (on the Vienna cluster). Each simulation
run was carried out on one workstation only. All exesut
bles print out their result in terms of theeeded wall clock
time.

The simulation runs should answer the following gue
tions:

1. Do the real observations and the simulated runs have
the same qualitative properties?

2. Do the real observations and the simulated runs have
the same quantitative properties?

3. Can the simulation results be used to evaluate thre pe

formance of workstations clusters a priori?
In the following figures, the observed and simulated

wall clock times are plotted against the processor grid used.

Such a grid or 2dimensional mesh is alwa assumed to
define the topology of the parallel computer, even if inlrea

ity this is a workstation cluster connected over a bus, star or " - . )
simulation layer, and WUS, the Workstation User Sianul

ring topology. Each processor is assigned to a certain plac
in the virtual mesh topology. Basically, aN x M grid

means thatN x M processors were used for the congput
tion. The relation ofN to M defines the communication pa
tern used, yielding different speegbs as the below results
show. As can be seen, simulation results atedifor a PC
cluster with slow communication (using Fast Ethernet) are
very accurate. The simulation highly satisfactory has-cap
tured both qualitative and quantitative performance heha

ior of this Beowulf cluster. Inaccuracies only occur for
some runs ofmatrix-matrix multiplication, where the sim-
lation does not reflect contention.

In contrast to simulating the performance of the PVM
versions ofScaLAPACK and PBLAS by using the same PVM
code, simulating their MPI versions by using the PVMve
sions on aifferent type of node is far more complicated.
Still, the qualitative behavior of the parallel programs is ac
curately simulated, while the quantitative results are gom
times a little misleading.

Run Time
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Figure 12. Cholesky factorizabn run time

It may thus be concluded, that performance cormpar
sons between different workstation clusters are possible,
though experiments must be carefully designed and-inte
preted. The qualitative behavior of parallel programs-ru
ning on a workstatin cluster though can be simulated-a
curately, independent of the use of PVM or MPI.

It is thus possible to analyze the behavior of parallel
programs and predict their performance, depending on
cluster parameters. Simulation results can be used tsinve
tigate the influence of different parameters of the simulated
workstation or PC cluster, in order to plan new hardware
configurations or make an educated choice between several
alterratives.

CONCLUSION

In this work, the simulation and assessment tGoUE
Ihas been described. It consistdiss-PvM, the actual

tor. Miss-pvM allows the simulation of parallel programs
using the PVM library for message passing. The simulation
may be carried out on one oeweral computers, whereas
the properties of the virtually assumed parallel computer
are defined in a configuration file. The conservative-di
tributed discrete event simulation protocol guarantees co
rect event order.

By linking Miss-pvMm to WUS, real appliations or s&-
tistical models can be used to simulate load balancing on



heterogeneous, interactively used workstation clusters. In
order to support this task, WUS allovgsiority scheduling
and produces load estimates similar to the standard UNIX
load metics, thus simulating the effect of concurrentlynru
ning processes.

The applicability and accuracy has been demonstrated
in three case studies. Simulation runs show good accuracy

when compared to real runs.
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