SimulatingParallelProgramPerformancewithCLUE DieterF.Kvasnicka InstituteforPhysicaland TheoreticalChemistry, ViennaUniversityofTechnology HelmutHlavacs dieter.kvasnicka@tuwien.ac.at InstituteforComputerScience andBusinessInformatics, UniversityofVienna hlavacs@ani.univie.ac.at ChristophW.Ueberhuber InstituteforAppliedand NumericalMathematics, ViennaUniversityofTechno logy RunProcess(runtime); loadavg=comp ->LoadAverage(n); docommunicationorloadbal ancing } collectresults ``` # The Unix Load Average Oneimportantapplication of CLUEisthedevelopment and assessment of dynamic load balancing strategies. Such strategies observe therun -time behavior of parallel pr ograms and identify overloaded and under loaded processors. A processor overload may occur, (i) if one process or has been assigned more work than others (this can be the case if the amount of work necessary to compute the result is not known in advance), or (ii) if work station users interactively start competing processes on neormore work stations. Theloadbalancingstrategythusmustreacttoload changesandmaydecidetotransmitworkfromoneproce sortoanother. Formeasuring case (ii), usually the Unix load average is used, i.e., the exponentially smoothed length of the processor queue, holding all currently running processes. The Unix load average \hat{X}_i is defined to be $$\hat{X}_{t+1} = \beta \hat{X}_t + (1 - \beta) X_t \tag{1}$$ where X_t isthenumberofrunningprocessesatti me t. Theloadaveragedependson $\beta \in [0,1]$, the exponential smoothing constant. It defines, how much of the past should be included into the current loadest imate. If writing $\beta = N/(N+1)$, then \hat{X}_{t+1} may also be interpreted as an estimate for the arithmetic mean of the last N observations X_{t-i} , i=0,1,K, N-1 [Schlitt genand Streit berg 1995]. By setting $$\beta = \frac{60}{61} \approx 0.984$$ and calculating X_t every second, X_t thus maybeinterpretedasthearithmeticmeannumber of processes runinthelast 60 seconds. Unix traditionally calculates such estimates for the last 60 seconds, the last 5 minutes and the last 15 minutes. WUS allows the comput tion of such load averages for any N. ### CASESTUDY:PARALLELINTEGRATION Inordertodemonstratetheapplicabilityof CLUEand tovalidatethesimulationaccuracy, several cases tudies have been conducted. Inthefirstcasestudy,aglobalbagoftasksisdefined tocontain10,000defin iteintegrals $$I[f,a,b] = \int_{a}^{b} f(x) dx \tag{2}$$ forgivenintegrands f(x) and giveninterval boundaries and b. This work load is then to be computed in parallel on work stations being interconnected by Fast Ethernet. The integrals are to be calculated using a globally adaptive automatic integrational gorithm [Piessenset al. 1983]. This algorithm computes an approximation $$Q[f,a,b] \approx I[f,a,b] \tag{3}$$ andanerrorestimate $$E[f, a, b] \approx e[f, a, b] = \left| Q[f, a, b] - I[f, a, b] \right|$$ (4) such that $E[f,a,b] \le \tau \tag{5}$ foragivener rortolerance τ . The estimates Q[f,a,b] and E[f, a, b] are calculated by evaluating f(x)at Npointsand applyingaso -called integration formula [Krommerand Ueberhuber1994], being aweighted sum of the integrand values. Then, if (5) does not hold, the original interval [a,bissubdividedintotwointervals [a,(a+b)/2] and [(a+b)/2,b], and estimates (3) and (4) are again calc latedforbothsubintervals. If the sum of the two err orest imatesstilldoesnotfulfill(5),theintervalwiththelargest errorestimateischosenandfurthersubdivided. Thispr Ocedure,resultinginapossiblylargenumberofsubintervals andthereforeintegrandevaluationsthusdependsonthe inputdata *f*, *a*and *b*inanunpredictablewayandthe neededCPUtimeforobtaining(5)isnotknownapriori. Thisalgorithmisdifficulttoparallelize,asitisintrinsically sequential. Also, if a large number of independent calcultions for (2) are to be perform edin parallel, a distribution of the tasks *apriori* is difficult, as the CPU requirements of each task is unknown and thus some processors might get overloaded while others might so on be idle because their tasks need only little CPU time. Fortheintegran d f(x), three basic integrand classes were chosen: Oscillatingintegrands(7families). a- - Integrandswithsingularities, peaksordiscontinuities (8families). - Mixturefamilies(6families). Eachintegrandfamilydependsonaparameter α∈ [0,1] definingtheseverityoftheintegrationproblem (2).Thehigher α is,themoreintegrandevaluations and thus CPU time is needed to obtain (5). An example for an oscillatory family is given by $$\int_{0}^{2\pi} x e^{\alpha x} \sin(600\alpha + x) + 1 dx.$$ (6) Figure 6showsthenumberofintegrandevaluations for family (6) needed to fulfill the error requirement (5). The results are given for different N-point integration formulas. **Figure 6.** Function evaluations needed for oscillating integrands. Acompletedefinition of the integrand families as well as a mathematical explanation of the curves hapes can be found in [Hlavacs 2000]. Eachofthe 10,000 tasks is defined by choosing one in tegrand family and one particula r $\alpha \in [0,1]$ at random, de scribing the computation of exactly one definite integral. A central mastermanages the bag of tasks. The program has first been executed on a network of work stations (NOW) consisting of five Sunwork stations withSp arcandUltraSparcprocessorsandrunningtheSun Solarisoperatingsystem.Theseworkstationswereco nnectedbyaswitchedFastEthernetne tworkyielding100 Mbit/sbandwidth.Additionally,thepro gramhasbeen simulatedwith CLUE. Figure 7showsthemeasuredrun -timesandthesimul ationresults.Itcanbeseenthatinthisscenario,theacc uracyof CLUEisveryhigh.Theexperimentalsoshowsthat withmorethanfourworkstations,nomorespeed -upiso bserved. **Figure 7.** Measuredruntimevs.simulatedruntime(in seconds)ontheSunNOW.Taskmessagesizeis10KB. ThesameexperimenthasbeenrepeatedontheBe wulfclusterofSMPsmaintainedbytheInstituteforPhys i-calandTheoreticalChemistryof theViennaUniversityof Technology,describedinalatercasestudy.Thiscluster consistsoffivePCscontainingtwoprocessorseach. Figure 8showsthesimulationresults.Againthesimulationresult yieldshigha ccuracy. **Figure 8.** Measuredruntimevs.simulatedruntime(in seconds). Taskmessagesizeis 500 KB. ### CASESTUDY:LOADINDEXEVALUATION Inthiscasestudy,the WUS load average simulation is used to find an optimum β for predicting the future workstation workload. One obvious question is, which β is best to predict the future workload of a work station, and thus the time it takes to compute a task under a given workload. ### SampledWork load Inordertoobtainrealisticbackgroundworkload,tra ingprogramswerestartedononeparticularnetworkof workstationsbeingmaintainedattheViennaUniversityof Technology.TheobservedworkstationscontainedDEC AlphaprocessorsundertheOSF/ 1operatingsystem.The workloadwassampledduringtheperiodfromMarch15th, 1998toMay13th,1998.ForallvisibleUnixprocesses,the sampledworkloadparameterswere: - ➤ Time - ProcessID(PID) - ParentPID - CPUtimeconsumedsofar - CPUtimeconsumedbyall children - Executablename Figure 9showsatypicalworkstationworkloadashas beenobservedonaMonday.Itcanbeseen,howthetimeof dayinfluencesthearrivalofprocesses,thusreflectingthe workloadthatisgeneratedbyinter activeusers.Thewor kloadtracefilesindicatelargefluctuationsofworkloaddu ringtheday.Especiallythefastermachinesaremorelikely togetveryhighworkloads. **Figure 9.** Arrivalofprocessesperminuteononepa ricularworkstationday. ### **SimulationScenario** Forevaluating different load averages, the following simulations cenariowas chosen: The work load of one work station daywas provided to WUS, which would use this data to create virtual processes. Beginning at time t, a process consuming t of tinuouslycreated. Atstarttime, the load average (1) was used to predict the actual run - time of this process under the observed load situation. After the process consumed the CPU time, the predictioner ror, i.e., the difference between the predicted and the actual run - time was computed. Then, another process consuming s CPU seconds was immed i-ately created. ## **SimulationResults** Figure 10showsthesimulationres ults. Asameasure forthepredictionquality, the figures show the meaner ror of all predictions for one particular tuple (β, s) . It can be seen that when averaging over the whole day and for processes consuming only a few CPU seconds, the best predictionis given by $\beta=0$, which according to (1) denotes the actual number of running processes. As processes consume more CPU seconds, higher values of β produce better esults. **Figure 10.** Simulation results using the workload of one particular workstation from 00:00 to 24:00. # CASESTUDY:SCALAPACKONPCCLUSTERS Inthiscasestudyitisdemonstratedhowtouse CLUE forsimulatingtheperformanceofstandardsoftwarerunon PCc lusters.APCclustertypicallyconsistsof Nof-the-shelf PC sconnected with each other overstandard Fast Ethernetorsomegigabitclassnetwork,eachPCcontainingone,two orfourIntelcompatibleprocessorsworkinginsymmetric sharedmemory(SMP)mod e.PCclustersrunningthe Linuxoperatingsystemareoftencalled **Beowulf** clusters andhavebecomepopularinthelastfewyearsduetothe factthattheydeliverhighcomputingpoweratareasonable price. Due to the availability of a large number of dif ferent PChardwarecomponents, it is difficult to decide which clusterconfigur ationyieldsthebestperformancefora givenapplication. Simulating different cluster configur ationsbeforedecidingtobuyoneparticularmayaidthis decisionprocess.Int hecarriedoutexperiments,twosp ecificPCclusterconfigur ationshavebeeninvestigated. #### The Vienna Cluster. ThefirstPCclusteroftheresearchprojectAURORA (http://www.vcpc.univie.ac.at/aurora/)wasbuiltforcoop erationbetweentheInstitutesfor AppliedandNumerical MathematicsandPhysicalandTheoreticalChemistry,both partoftheViennaUniversityofTechnology.Itconsistsof onemasterandfivedualPentiumIIslavesusingFast Ethernetcommunication.Themasterisusedasfileandnet serveranddoesallthecompilationwork. Figure 11showsthesendandtransmissiontimeso servedontheViennacluster.Bothsenderandreceiverrun onthesamenode,thusthemessageisnotsentoverthene work.Als o,thepiecewiselinearmodelusedforthesimul tionisshownaswell.Thesemeasurementswereconducted byrunningspeciallywrittentimingsoftware,usingboth PVMandordinaryUDPpacketsfortimesynchronization. a- Additionally,forthecaseofsendin gmessagesfrom onesendertoseveralreceiversatthesametime,contention hasbeenobservedthatincreasesboththesendandtran missiontime. **Figure 11.** SendandtransmissiontimefortheV ienna cluster. Senderandreceive rareonthesamenode. # **TheAachenCluster** ThePCclusterSiemenshpcLineconsistsof16dual processorboardsusing400MHzPentiumII.Thenodes communicateeitherviaswitchedFastEthernetorSCI (ScalableCoherentInterface). The computational factor of nodesoftheAachenclusterhasbeenmeasuredtobe0.91 relativetotheViennacluster,wheresimulationrunshave beenca rriedout. Additionally, the SCI network was only availablefortheMPIversionof BLACS.Thus,thecomm unicationp arametersand theperformanceoftherealruns werecollectedfortheMPIversionof BLACS, whereas the simulationrunswerestillcarriedoutontheViennacluster usingthePVMversionofthe BLACS.Communic ation modelsfortheAachenclusterSCInetworkcanbefound in [Hlavacs2000]. #### SimulatedSoftware Thestandardparallelsoftwarechosenforsimulation consistsofsubroutinesof SCALAPACK[Blackfordetal. 1997],theparallelversionof LAPACK[Andersonetal. 1999],thewell -knownlibraryforlinearalgebra.Both LAPACKand SCALAPACKarebasedoncallstothe basic linearalgebrasubprograms (BLAS),theirparallelversion beingcalled PBLAS.Both PBLASand SCALAPACKusethe basic linearalgebracommunicationsubroutines (BLACS) forcommunication,the BLACSitself beingbasedonPVM orMPI. Three SCALAPACKroutineswereusedtodemonstrate theusefulnessandreliability of CLUE: - ➤ **Matrix-MatrixMultiplication.** Theroutine PBLAS/pdgemmisusedtomultiplytwomatrices. - CholeskyFactorization. Theroutine pdpotrfisusedtocomputetheChol tionofasymmetric,positivedefinitem atrix. - LUFactorization. Theroutine SCALAPACK/ pdgetrfisusedtocomputetheLU -factorizationofa generalmatrix. In this case study matrix sizes have been set 0.000×2000 . ## **SimulationResults** Fortherealruns,thePVMversionof SCALAPACKand PBLASwereused(ontheViennacluster).Each simulation runwascarriedoutononeworkstationonly.Allexecut ablesprintout their resultinterms of then eeded wall clock time. The simulation runs should answer the following que stions: - 1. Dothereal observations and the simulated runs have the same qualitative properties? - 2. Dothereal observations and the simulated runs have the same quantitative properties? Canthesimulationresultsbeusedtoevaluatethepe formanceofworkstationsclustersapriori? Inthefollowing figures, the observed and simulated wall clock times are plotted against the processor gridused.Suchagridor2 -dimensionalmeshisalwa ysassumedto definethetopologyoftheparallelcomputer, evenifinrea 1itythisisaworkstationclusterconnectedoverabus, staror ringtopology. Each processor is assigned to a certain place inthevirtualmeshtopology.Basically,an $N \times M$ grid meansthat $N \times M$ processorswereusedforthecomput tion. Therelation of Nto Mdefinesthecommunication pa tternused, yielding different speed -upsasthe below results show. Ascanbeseen, simulation results obtai nedforaPC clusterwithslowcommunication(usingFastEthernet)are veryaccurate. The simulation highly satisfactory has cap tured both qualitative and quantitative performance beha iorofthisBeowulfcluster.Inaccuraciesonlyoccurfor somerunsof matrix-matrixmultiplication,wherethesim u lationdoesnotreflectcontention. IncontrasttosimulatingtheperformanceofthePVM versionsof SCALAPACKand PBLASbyusingthesamePVM code,simulatingtheirMPIversionsbyusingthePVMve rsionsona differenttypeofnodeisfarmorecomplicated. Still,thequalitativebehavioroftheparallelprogramsisac curatelysimulated,whilethequantitativeresultsaresom etimesalittlemisleading. Figure 12. Choleskyfactorizat ionruntime . n- Itmaythusbeconcluded, that performance compar sons between different work station clusters are possible, though experiments must be carefully designed and intepreted. The qualitative behavior of parallel programs runing on a work stati on cluster though can be simulated a curately, independent of the use of PVM or MPI. Itisthuspossibletoanalyzethebehaviorofparallel programsandpredicttheirperformance,dependingon clusterparameters. Simulation results can be used to invetigate the influence of different parameters of the simulated workstation or PC cluster, in order to plannew hardware configurations or make an educated choice between several alternatives. # **CONCLUSION** Inthiswork,thesimulationandassessmenttool CLUE hasbeendescribed.Itconsistsof MISS-PVM,theactual simulationlayer,andWUS,theWorkstationUserSimul ator. MISS-PVMallowsthesimulationofparallelprograms usingthePVMlibraryformessagepassing.Thesimulation maybecarriedoutononeors everalcomputers,whereas thepropertiesofthevirtuallyassumedparallelcomputer aredefinedinaconfigurationfile.Theconservativedi stributeddiscreteeventsimulationprotocolguaranteesco recteventorder. Bylinking MISS-PVMtoWUS,realapplic ationsorst atisticalmodelscanbeusedtosimulateloadbalancingon heterogeneous,interactivelyusedworkstationclusters.In ordertosupportthistask,WUSallows priorityscheduling andproducesloadestimatessimilartothestandardUNIX loadmetr ics,thussimulatingtheeffectofconcurrentlyru ningprocesses. The applicability and accuracy has been demonstrated in three cases tudies. Simulation runs show good accuracy when compared to real runs. ### REFERENCES - [Allen1990]AllenA.O .:Probability ,StatisticsandQueuingThe ory.Ac ademicPress,Orlando1990. - [Andersonetal.1999]AndersonE.et.al :Lapack Users'Guide, 3rded. SIAMPress,Philadelphia1999. - [Aversaetal.1998]Aversa,R.,Mazzeo,A.,Mazzocca,N.,Vi llano,U.: "HeterogeneoussystemperformancepredictionandanalysisusingPS", IEEEConcurrency6 -3(1998),pp.20 —29. - [Blackfordetal.1997]BlackfordL.S.etal. :ScaLapackUsers'Guide. SIAMPress,Philadelphia1997. - [CalzarossaandSerazzi1985]CalzarossaM.,SerazziG.:"A CharacterizationoftheVariationinTimeofWorkloadArr ivalPatterns",IEEE TransactionsonComputersC -34-2(1985),pp.156 —162. - [CalzarossaandSerazzi1986]CalzarossaM.,SerazziG.:"SystemPerfor mancewithUserBehaviorGraphs",PerformanceEvaluat ion11(1990), pp.155—164. - [Ferscha1996]Ferscha,A.,Johnson,J.:Performanceprototypingofpara llel applicationsinN -map",In ProceedingsoftheIEEESecondInt.Co n ferenceonAlgorithmsandArchitec turesforParallelProces sing, IEEECSPress1996, pp.84 —91. - [Heath1993]HeathM.T.:"RecentDevelopmentsandCaseStud iesinPe r-formanceVisualizationusingParaGraph",In PerformanceMeasur e-mentandVisualizationofParallelSys tems(G.Haring,G.Kotsis, eds.),ElsevierSciencePublis hers,Amsterdam1993,pp.175 —200. - [HlavacsandUeberhuber1998]HlavacsH.,UeberhuberC.W.:"Simula ting LoadBalancingonWorkstationswithIrregu larlyFluctuatingCapa c-ity",AURORATechnicalReportTR1998 -11,TechnicalUn iversityof Vienna1998. - [HlavacsandUebe rhuber1999]HlavacsH,UeberhuberC.W.:"Simula ting LoadBalancingonHeterogeneousWorkstationClusters",in *ACPC'99*,SpringerVerlag,Berlin1999. - [Hlavacs2000]HlavacsH.: "ClusterComputing -HighPerform anceSolutionsofProblemswithUnknownComp lexity",Ph.D.dissert ation, TechnicalUniversityofVienna,Austria,November2000. - [KrommerandUeberhuber1994]KrommerA.R., UeberhuberC.W.: NumericalIntegrationonAdvancedComputerSy stem,. Springer-Verlag, BerlinHeidelbergNewYork1994. - [KvasnickaandUeberhuber1997]KvasnickaD.F.,UeberhuberC.W.:"D evelopingArchitectureAdaptiveAlgorithmsUsingSimulationwith MISS-PVMforPerformancePrediction",In 11th ACMIntern ational ConferenceonSupercomputing, 1997,pp.333 —339. - [Kvasnicka 2000]KvasnickaD.:"HighPerformanceComputinginMat erials Science",Ph.D.dissertation,TechnicalUniversityofVienna,Austria, September 2000. - [Labartaetal.1996]LabartaJ.etal.:"Dip:Aparallelprogramdevelo pment environment",In *Proc.Euro -Par'96*, Vol.II. Springer-Verlag,Berlin HeidelbergNewYork1996,pp.665 —674. - [Piessensetal.1983]PiessensA., DeDonckerE., KapengaJ., Ueberhuber C.W., KahanerD.: Quadpack, A Subroutine Package for Automatic Integration. Springer - Verlag, Berlin Heidelberg New York 1983. - [Sheehanetal.1999]SheehanT.,MalonyA.,ShendeS.:"Run timeMonitoringFrameworkfortheTAUProfilingSystem",In Proceedingsofthe ThirdInternationalSymposiumonComputinginObject -Oriented ParallelEnvironments(ISCOP E'99),SanFrancisco,CA,December 1999. - [Rosenblumetal.1997]RosenblumM.,BugnionE.,DevineS.,HerrodS.: "UsingtheSimOSMachineSimulatortoStudyComplexCo mputer Systems",ACMTOMACSSpecialIssueonComputerSimul ation, - [Schlittgenand Streitberg 1995] Schlittgen R., Streitberg B.: Zeitreihenanalyse. R. Oldenbourg Verlag, Muenchen Wien 1995. - [TomasandUeberhuber1994]TomasG.,UeberhuberC.W.: Visualization of ScientificParallelPrograms . Springer-Verlag,BerlinHeidelbergNew York1994. - [Yanetal.1995]Yan,J.,Sarukkai,S.,Mehra,P.:"Performancemeasur ment,visualizationandmodelingofparallelanddistributedpr usingtheAimstoolkit",SoftwarePrac ticeandExperience25 -4 (1995),pp.429 —461. - [Zhou1986]ZhouS.: "ATrace -DrivenSimulationStudyofD ynamicLoad Balancing",IEEETransactionsonSoftwareE ngineering14-9(1988), pp.1327—1341. ### **BIOGRAPHIES** DieterF.Kvasnicka receivedhisMastersdegreeinco putersciencein1994andhisPh.D.in2000,bothfromt heV iennaUn iversityofTechnology.Since1997heisemployedatthe In stitute of Physical and Theoretical Chemistry of the ViennaUniversity of Technology. Heisamember of the Special R searchProjectAURORAoftheAustriansciencefundFWFand workso nn umericalalgorithmsforhighperformancecomputingin materials science, including the development of message passing parallela pplicationsandprogramlibraries.DieterKvasnickais theauthorofseveralpublicationsandtechnicalreportsabout parallelsimul ation, cluster computing, blocking techniques in symmetriceige nproblemsandothernumericalsoftware, and high performancelinearalgebraandFFTalgorithmsimplemented usingHighPe rformanceFortran,andhepresentedhisfindingson manyinter nationalconferences and workshops. HelmutHlavacs receivedhisMastersdegree(Mathematics) in1993attheViennaUniversityofTechnology,followedbyhis Ph.D.in2000.From1998to2000heworkedasaresearcherfor theEuropeanresearchprojectBISAN TEattheInstituteforCo mputerScienceandBusinessInformaticsattheUniversityofV i-enna.Since2000heisAssistantProfessoratthisinstitute.Fu r-thermoreheismemberoftheAustrianscienceprojectAURORA intheareaofnumericalalgorithmsfo rhigh-performancecomputing.HelmutHlavacsisauthorofseveralpublications,technical reportsandprojectdeliverablesintheareaofnumericalmathe -matics,high-performancecomputing,workloadmodelingandnet worksimul ation. Christoph W. Ueberhube rreceivedhis Mastersdegreein 1973 and his Ph. D. in 1976, both in the field of Mathematics. In 1973 hebecame Assistant Professor for Numerical Mathematics at the Institute for Numerical and Applied Mathematics, Vienna University of Technology, where eadvanced to a tenure position in 1980. Since 1998 he is Associate Professor there. Hetookpartinmanycompletedresearchprojectsinthearea ofnumericalanalysis, scientificcomputing, highperformance computing, graphical data processing and image rocessing, technical data processing, and environmental protection. Heals oparticipated in two majorresearch projects in the area of parallel computing and numerical algorithms and software for high-performance computers. Heisauthor of 11 books and more than 100 publications in journals, books, and conference proceedings.