Cluster Configuration by Simulation

October 13, 2000

Abstract

In many cases the acquisition of a PC cluster is limited by financial
restrictions. Given a fixed amount of money, the newly developed
simulation tool CLUE can be used to decide which configuration of
the components of the cluster gives the best price/performance ratio.
Due to the simulation based approach, even the impact of components
can be evaluated that are projected to be available in the future.

As a case study, it will be demonstrated how to use CLUE for find-
ing the cluster configuration yielding the optimum price/performance
ratio for WIEN 97, a package for computational chemistry.

Keywords: Cluster Computing, Simulation, High-Performance Computing,
Parallel Computing, Execution Driven Simulation.

Introduction

Many customers of high performance computers intend to run their parallel
applications as fast as possible under given restrictions. These restrictions
include, for example, a limited budget or high hardware availability. Usu-
ally, there is a confusing multitude of hardware alternatives meeting these
restrictions, which customers must choose from.

One popular way of exploiting high performance computers is to use them
as centralized resource within computing centers, being accessible by a large
number of users. These computers are most often classical multiproces-
sors/multicomputers. Customers using centralized computers usually pay
only for the cycles they actually consume.

An alternative option is to buy computers exclusively dedicated to the
customers applications. In this case customers have to pay for the hardware
and software maintenance, even if the computer systems are not used perma-
nently. Dedicated PC clusters consisting of standard off-the-shelf components
have gained high popularity over the last years, as these configurations yield
a favorable price/performance ratio.

Customers of PC clusters have to choose between various hardware con-
figurations. However, it is difficult to estimate the impact of these decisions
on the performance of their parallel software. The newly developed CL Uster
Evaluator CLUE described in this paper is a tool for evaluating the perfor-
mance of various configurations of PC clusters. It’s usability is demonstrated
by a case study for finding an optimum PC cluster configuration for the
WIEN 97 ([3]) package, an application code from computational chemistry.
WIEN 97 is available in two different parallel implementations, one requiring
a large amount of memory for each processor node, the other one relying on
a fast communication network. Both of these requirements nearly double the
price of each node.

The limit imposed by budget restrictions renders many cluster configura-
tions impossible. Still, a large number of feasibly configurations remain, and
it is impossible to find the optimum configuration without applying appro-
priate performance estimation techniques, like

e analyzing published benchmark results;

e obtaining accounts on existing PC clusters and running own benchmarks
(synthetic or real applications);

e using analytical models to evaluate the theoretical performance of dif-
ferent configurations; or

e creating a model of the feasible configurations and using a simulator to
gain performance information.

Utilizing published benchmark results is the quickest and most straight for-
ward way. If results from standard benchmarks are available, the probability
of faulty results is low. However, standard benchmarks do not provide use-
ful information for all sequential applications. This is even more true for
parallel applications, especially if these applications have irregular communi-
cation patterns and/or different instruction mixes. For example, the popular
LiNnrPACK benchmark shows a highly regular communication pattern. Since

benchmark results are available only for a subset of possible configurations,
several preconditions have to be satisfied: the computer configurations must
exist, standard benchmarks must have been executed on them, and the results
must have been published. Existing benchmark results might reflect older
hardware, because the gap between existing clusters and hardware that is
available at the moment of decision making is about one processor genera-
tion.

Running your own benchmarks is an approach to obtain very accurate
performance metrics if the PC cluster can be accessed exclusively. However,
these benchmarks or application runs are usually limited to a rather small
number of existing PC cluster configurations. Moreover, it is not always
easy to obtain accounts, especially on production systems where it might
be impossible to get an exclusive access to the system even for a short time.
Also, as in the standard benchmark approach, components of existing clusters
are usually older than the ones to be purchased.

Using analytical models is one of the fastest methods to obtain results,
provided the analytical models already exist. There is no limit for configu-
ration parameters that may be modelled and there is no measurement error.
However, accurate analytical models are extremely complicated to create,
usually, only few components of the real hardware configurations and ap-
plication benchmarks can be included. These restrictions often necessitate
oversimplifying assumptions, which may decrease the model’s accuracy in an
intolerable way.

Simulation makes it possible to run experiments for many different con-
figurations, including existing and non-existing (future) hardware. In this
approach, the cluster under consideration is represented by a mathemati-
cal model (a “virtual cluster”) that drives the simulation kernel. Basically,
models of arbitrary complexity can be created, limited only by the modelling
effort spent. Simulation models are potentially more accurate than analytical
models. For example, when simulating a queuing network instead of solving
it analytically, any distribution for the (stochastic) interarrival and service
times can be used. Also, it is possible to obtain insight why the used bench-
mark achieves better performance on certain configurations. Furthermore,
the virtual cluster is owned completely by the user, so there is no interference
with a production system or other users. However, there are drawbacks in-
herent to this technique. The creation of models for hardware configurations
and applications may be difficult and time-consuming. The complexity (and
thus accuracy) of the hardware and software models will be limited by the

1 RELATED WORK 4

simulation environment and the simulation run times. Also, the simulation
models must be validated with care. It is usually not possible to include
“back ground utilization” of clusters, i.e., load created by competing users.

In this paper CLUE is presented, a cluster evaluation tool possessing all
the mentioned advantages of the simulation approach and eliminating as
many of the disadvantages as possible. The hardware model parameters are
easily obtained either by real measurements or by extrapolation of known
parameters. The software models are most easily constructed by taking the
original source code as input to the simulator. Furthermore, CLUE allows
taking into account back ground utilization created by competing cluster
users.

1 Related Work

In the past, several attempts have been made to simulate the performance
of parallel programs. N-MAP [7], for example, allows to predict the perfor-
mance of parallel programs by specifying code fragments only. The PVM
Simulator PS [1] follows an approach similar to ours, accepting full PVM
programs or program prototypes. PS, however, does not use execution driven
simulation but produces trace files describing the communication pattern of
the application under observation. These trace files then drive the simulation
kernel to derive simulation results. SPEEDY [12] is part of the performance
extrapolation tool TAU, that also collects run-time trace information of par-
allel programs written in pC++-, which is later used to drive the trace-driven
simulation engine. The same trace-driven approach is used in D1p [11].

In general trace-driven approaches assume that the communication pat-
terns are fixed and do not depend on the run-time situation. This assump-
tion is valid, for example, for routines from the SCALAPACK library. In cases
where the communication depends on the run-time situation, however, for
example when simulating the effect of load balancing mechanisms, in contrast
to execution driven simulation, this approach cannot be used.

More sophisticated execution driven simulators include, for example, the
simulation platform SiMOS [13]. The simulation kernels of this platform
allow the simulation of various processor models and hardware features with
varying degree of complexity. Simulators for different processor models in-
clude EMBRA, M1pPsy, and MxsS. Users of SIMOS simply start the binary
executable of their code which then drives the simulator. This approach,

2 THE SIMULATION TOOL CLUE 3

however, relies on the availability of a processor model for the processor fam-
ily the executable was compiled for. Other platforms cannot be simulated.
The processor families being modelled so far include the MIPS R10000 and
the Compaq Alpha family.

Other parallel programming tools like A1MS [15] observe real program
executions and provide sophisticated tools for post-mortem trace file analy-
sis. In this approach, only the performance of parallel programs which are
executed on available platforms can be evaluated.

Yet another approach is taken in the EDPEPPS [4] tool. Here, users may
construct application models for PVM programs by using the graphical pro-
gram representation language PVMGraph. This representation then drives
the simulation kernel. This approach is meant for rapid prototyping but
cannot be used for the simulation of sophisticated load balancing techniques.

2 The Simulation Tool CLUE

CLUE is based on MISS-PVM [17], the Machine Independent Simulation
System for PVM 3. CLUE is meant to support (i) configuration decisions
concerning clusters of SMPs, (ii) the development of software for parallel
computers which are not yet available, (iii) reproducible performance assess-
ments in environments with constantly changing load characteristics (like
NOWs), and (iv) the debugging of parallel programs.

Using CLUE, reliable information can be obtained to reach the optimum
decision on hardware configurations (processing elements and communication
networks) before actually purchasing this hardware. Thus, the acquisition
of hardware can be adapted to individual software features, reversing the
currently used techniques of adapting high-performance software to hardware
features (as used, for instance, in FFTW [8, 9], PHIPAC [2], or the ATLAS
tool [14]). To exploit these features of CLUE, it is not necessary to rewrite
existing C or Fortran code or to create additional code. PVM based code
can be used without modification.

CLUE’s favorable properties are achieved by establishing a virtual layer
which does not have to be tampered with when developing software. The
Virtual Layer for PVM 3 is situated between the user program and PVM 3
(see Fig. 1). Calls to PVM 3 are redirected to CLUE subroutines performing
virtual timing and virtual machine adaptation. Afterwards, the calls are
passed to PVM 3 in a modified manner.

2 THE SIMULATION TOOL CLUE 6

Parallel ParaGraph
User Program Post Animation
PVM 3 Trace
Routine .
Calls File
Virtual Layer | Simulation Output
for PVM 3 Output Processing
PVM 3
Routine
Cals
PVM 3
Native
Communication
Routines

Figure 1: Position of CLUE’s Virtual Layer.

Using the virtual layer is possible without the necessity to modify the
user program. Instead, it is sufficient to use different include files and to link
the user program to to the CLUE library. The virtual layer generates output
files tracing all calls to communication subroutines, which can be used for
post-mortem visualization.

This tracing technique has two major advantages over conventional trace
file writing. The Virtual Layer for PVM & (i) uses its own simulated system
time, and (ii) makes a virtual machine available to the user.

The virtual machine may represent a wide variety of real machines which
may even be non-existent or not available at the moment. The parameters
defining the machine characteristics are read from a configuration file at
simulation start and may be changed dynamically during the simulation run.

The virtual layer makes it possible to compare program runs on computers
having different communication latency and computation speed (independent
of actual load characteristics). For instance, reproducible experiments for the
assessment of load balancing strategies on irregularly loaded NOWSs can be
made easily and quickly.

High level communication libraries like the BLACS (Dongarra et al. [5, 6])

3 HARDWARE CONFIGURATION PARAMETERS 7

can be simulated very comfortably. Once the high level library routines
(based on PVM) have been recompiled, no further modifications are needed.
The user program is linked with the new library. The result is a program
that performs the same task as before, except that it writes an output file (if
required) and can be simulated on virtual machines.

The simulation of MPI programs using MISS-PVM requires some caution.
For example, the communication of SCALLAPACK routines is completely hid-
den in the communication library BLACS, which can be based on either MPI,
PVM, or other message passing libraries. There are major differences in the
program start and communication setup, but during the algorithm the com-
munication patterns are essentially the same. It has been demonstrated that
the simulation of MPI programs using MISS-PVM is sufficiently accurate
(see XXX [16]).

For small programs usually the whole simulation runs on one processor.
For large programs (especially those performing compute intensive tasks) the
overall execution time is often a prohibitive factor in simulation. Therefore,
in cases which require much time or main memory, the simulation can be
distributed to several processors. Simulation with CLUE is only accurate if
enough memory is available for all parallel program instances. If swapping
occurs, inaccuracies amounting to more than 10 % may occur.

The simulation performed in this paper is only valid for an exclusively
accessed PC cluster. It is also assumed that there is only one process per pro-
cessor. CLUE was designed to produce only a very low simulation overhead
by using execution driven simulation and compiled communication models,
which are parameterized at the beginning of each simulation run.

3 Hardware Configuration Parameters

Virtual machines are defined by an input file. This file contains the specifi-
cation of a machine used for the master program and for additional machines
or host types. For each record possible parameters are:

Name of the machine or host type. This name is used in pvm_spawn.
If the machine performance factor (described next) is 0, the machine
is assumed to be real, and the program is started on this machine.
Otherwise the machine has a virtual name, and PVM 3 is asked to look
for a suitable machine.

3 HARDWARE CONFIGURATION PARAMETERS 8

Performance factor. This is a floating-point multiplier p for calculating
the computation time. If this parameter is 0, the computation timing
results are not changed. Otherwise, if a process of a parallel application
consumes n CPU seconds between two adjacent calls to the virtual layer,
the virtual time is increased by p X n seconds.

Initialization Delay. This is the time needed for pvm_spawn to be called.
It is measured in multiples of 100 microseconds.

Spawn Delay. This is the time spent in pvm_spawn. It is measured in
multiples of 100 microseconds.

Send Delay. This is the time used for sending a message using pvm_send
or pvm_mcast. This time contains packing the message, resolving the
address of the host and starting the transmission (as far as the sending
process is involved). This time is measured in 100 microseconds per
KB. The parameters may be specified as k,d, where the send delay
s(m) depending on the message length m is given by s = k x m +d, or
may be specified as tupels (my, s(m;)), where the actual send delay is
interpolated linearly between these points.

Receive Delay. This is the time used in calling the receive routines pvm_recv,
pvm_nrecv and pvm_probe. This time is always the same whether these
routines succeed or fail. It is measured in multiples of 100 microseconds.

Transmission Delay. This is the time used to transfer a message minor
the send delay. As with the send delay, the transmission delay may be
specified as linear model or linearly interpolated data points. This time
is measured in 100 microseconds per KB.

Packing Delay. This is the time used to pack the message into the PVM 3
send buffer. This time is measured in 100 microseconds per KB.

Send and transmission delay may be specified for any pair of hosts, they
may also be specified for the send and transmission of messages from one
host to itself, in case multiprocessor machines are to be modelled. Fig. 2
shows the assumed model for the send and transmission delay. If the actual
performance model turns out not to be exact enough, it can easily be changed
by modifying the configuration file.

4 CASE STUDY: OPTIMUM CONFIGURATION FOR WIEN 97 9

Program/Model 1 Program/Model 2

J/» pvm_recv()

pvm_send()
send time §
transmission
S time
. | recvtime

virtua time

Figure 2: CLUE communication model.

4 Case Study: Finding an Optimum Cluster
Configuration for WIEN 97

In this case study we demonstrate the applicability of CLUE for finding
an optimum hardware configuration for a particular parallel application, in
this case by taking a well known package from computational chemistry,
WIEN 97!, as an example. We assume that an institute is planning to pur-
chase a PC cluster to run the computationally expensive WIEN 97 simula-
tions. Furthermore we assume that there is a tight limit on the budget that
the institute can spend.

WIEN 97 uses the linearized augmented plane wave (LAPW) method for
solving the Kohn-Sham equations for the ground state electron density p,
the total energy E[p|, and the (Kohn-Sham) eigenvalues ¢;. This program
package is written in Fortran 77 and requires a UNIX operating system since
several programs are linked together via C-shell scripts. WIEN 97 has been

LWIEN 97 is used by over 400 academic and industrial user groups worldwide; see
http://www.tuwien.ac.at/theochem/wien97/

4 CASE STUDY: OPTIMUM CONFIGURATION FOR WIEN 97 10

implemented successfully on many mainframes and workstations of the major
computer companies as well as on PCs running Linux.

The execution time of one particular WIEN 97 run is presented in Fig. 3
which shows that lapwl is the most time consuming program of the WIEN 97
package (see also Haunschmid, Kvasnicka [10]). lapwl is used in a self-
consistency cycle, which is repeated until convergence criteria are met.

Self Consistency Cycle

lapwil
lapw2

r

lcore mixer

Figure 3: Execution time subdivision of the self-consistency cycle of WIEN 97
(material: rutile, 790O5). The area of each box is proportional to the (sequen-
tial) execution time of the respective routine.

Since lapwl requires most of the sequential execution time, it is also
most critical in a parallel execution on just a few processors. Furthermore,
with increasing problem size, it remains the critical program also with an
increasing number of processors.

The most important subroutines of lapwl are (i) setting up the Hamilto-
nian H and the overlap matrix S, and (ii) solving a generalized symmetric
eigenproblem for about 10 % of the eigenpairs (eigenvalues ¢; and eigenvectors
Ci)l

HCZ' = GZ’SCZ' . (1)
Typical problem sizes range from n = 1000 to n = 10 000.

The standard method for solving the eigenproblem (1) for dense matrices,
as implemented, for example, in SCALAPACK, is to reduce the generalized
eigenproblem to a standard eigenproblem by using Cholesky factorization and
furthermore to reduce this standard problem to a tridiagonal eigenproblem,
where it can be solved easily. These two steps consume the majority of the
computing time spent in lapwl . Further analysis of the used linear algebra
calls also reveals that for parts of the code it is necessary to run the simulation

on a computer with a similar cache and memory hierarchy as the one that is
modelled.

4 CASE STUDY: OPTIMUM CONFIGURATION FOR WIEN 97 11

4.1 Software Models

Two application cases have been chosen:

e A small case with a matrix size of 2500%x2500 which can be solved on
one processor on a standard PC.

e A larger case with a matrix size of 6000x6000. In this case it is necessary
to either have more memory for each processor, or to distribute each
matrix to several processors.

Each case is responsible for 50 % of the overall workload of the PC cluster.

Two kernels, which are representative for the majority of the execution time,
have been extracted:

e Cholesky factorization, and
e Tridiagonalization.
Both of these kernels represent 50 % of the overall execution time.

Library routines such as the BLAS, LAPACK, SCALAPACK and BLACS are
utilized as much as possible. The simulation is performed with CLUE which
is based on PvM.

4.2 Communication Models

CLUE can apply various communication models. In this paper piecewise
linear models are used (see Fig. 4). Here, the time for sending a message of
particular size is represented by two models: (i) the send time, which is the
time the sending process is blocked, and (ii) the transmission time, which
is the additional time until the message is received. Latency and network
throughput are modelled automatically. The model parameters for the send
and transmission times have been measured on existing networks.

Additionally, a simple contention model is used which increases the com-
munication time (both send and transmission time) by a factor depending
on the number of simultaneous communication operations carried out.

4.3 Hardware Configurations

To choose the configuration of PC clusters with highest performance for
WIEN 97, several configurations are examined (see Table 1). It is assumed

4 CASE STUDY: OPTIMUM CONFIGURATION FOR WIEN 97 12

Send and Transmission Time

1
\ \ \ \
Real Send Time
Modelled Send Time
10~ Real Transmission Time -----
Modelled Transmission Time -----
1072 —
S
1073
_____ - o
10_4 :———-::::: —————————— N
10—5 \ \ \ \ \ \

0.01 0.1 1 10 100 1,000
Message size (KB)

Figure 4: Send and transmission time for a Fast Ethernet PC cluster. Sender
and receiver are on the same node. Although they share the same memory,
they communicate via a message passing library.

that the budget limit is set to ATS 300.000,—.? This price reflects only pure
hardware investments. Costs for the cluster installation and configuration as
well as for software are not included and would be similar for all configura-
tions.

Table 1 shows the configurations affordable according to the budget limit.
In this table, information on the clock rate and the manufacturer were omit-
ted, due to the fact that updates on clock rates occur too often and customers
will always aim at buying the fastest available version of a processor at the
time of purchase. Thus, this decision is delayed to the final stage of the
evaluation.

4.4 Preliminary Experiments

Preliminary experiments simulating the Level 3 based Cholesky factorization
have been performed with (i) a model for Fast Ethernet communication and

2approximately Euro 22.000,— or $20.000,—

4 CASE STUDY: OPTIMUM CONFIGURATION FOR WIEN 97 13

Number of | Memory | Processors | Interconnection
Name Nodes per Node | per Node Network
Network 6 256 MB 2 Gigabit Class
Memory 6 1024 MB 2 Fast Ethernet
Fine 7 128 MB 1 Gigabit Class
Coarse 7 1024 MB 1 Fast Ethernet
Cheap 10 256 MB 2 Fast Ethernet
Cheapest 15 128 MB 1 Fast Ethernet

Table 1: Configurations of clusters of PCs.

(ii) a model assuming gigabit class communication.> Results with increasing
number of processors are given in Fig. 5.

Runtime

\ \ [\ \ \
Fast Ethernet PC-Cluster, measurement

50 1~ Fast Ethernet PC-Cluster, simulated N
i Gigabit class PC-Cluster, measurement = —---- 7
40 - Gigabit class PC-Cluster, simulated ~ ----- —

1 2 3 4 5 6 7 8 9 10
Number of processors p

Figure 5: Simulation of the Cholesky factorization using CLUE (n = 2000).

It can be seen that for both network types, best results are achieved with
a square (e.g., 2X2 or 3x3) processor grid. In general, empirical observa-

3The communication model was constructed and validated using the PC cluster of
the RWTH Aachen, which uses an SCI network. A model for Myrinet communication
networks is available, but not used for the work described in this paper.

4 CASE STUDY: OPTIMUM CONFIGURATION FOR WIEN 97 14

tion shows that linear algebra algorithms work best if the processors can be
mapped onto a N x M, N > 1,M > 1 processor grid. Thus, most cluster
configurations under consideration (with two exceptions) hold this property.

4.5 Final Experiments

For the small application case, an analytical model was chosen to evaluate the
configuration performance. In this case it turned out that only the number
of processors, their performance, and in the dual processor nodes memory
contention have a significant effect on the overall performance. In contrast,
the influence of the network or the memory size can be neglected.

The performance z of the configurations was estimated using the analyt-
ical model

x = (F£processors) X (memory_contention_factor),

where the
memory _contention factor = 0.5 x mcfepolesky + 0.5 X mcfiridiag,

with
IanCholesky =10
and
e = 0.77 for dual nodes,
fridiag = 3 1.0 for single nodes.

The parameters mcfcnolesky and mcfiigiag for dual nodes were measured at a
Pentium II system. The parameter mcfiqgi,s is expected to vary depending
on the processor and memory bus system.

For the large test case, experiments using CLUE were made. Results of the
experiments are given in Table 2. In some cases more than one parallelization
strategy per configuration is shown. The column high level parallelization
tells how many instances of lapwl are solved concurrently. The column low
level parallelization tells how many processors are used for each instance of
lapwl (including shared-memory parallelism). The column parallelism tells
how many processors are engaged (the product of high level and low level).
The column empty tells how many processors are not used in the program
run. The columns kernel 1 and 2 tell the overall floating-point performance
in Mflop/s for the Cholesky factorization and the tridiagonalization, respec-
tively.

5 CONFIGURATION OPTIMIZATION

High | Low Kernel | Kernel

Name Level | Level | Parallelism | Empty 1 2

Network 3 4 12 0 5194 1578
Memory 3 4 12 0 4153 1501
Memory 3 2 6 6 3066 884
Fine 1 6 6 1 2225 814
Fine 1 7 7 0 1852 702
Coarse 3 2 6 1 2283 1025
Coarse 3 1 3 4 1552 587
Cheap 3 6 18 2 4666 1913
Cheapest 3 4 12 3 3284 1763
Cheapest 3 5 15 0 3248 1543

15

Table 2: Floating-point performance (in Mflop/s) for the large test case.

5 Configuration Optimization

Table 3 evaluates both the small and the large test cases by points. Only the
better result for each configuration (from Table 2) is included. The points are
distributed for each test case such that the fastest configuration is awarded
100 points. The points for the large test case are split equally to the two
kernels, each being assigned at most 50 points.

Small | Large Case | Large Case
Name Case Kernel 1 Kernel 2 Sum
Cheap 100 45 50 195
Cheapest 85 32 46 163
Network 60 50 41 151
Memory 60 40 39 139
Coarse 40 22 27 89
Fine 40 22 21 83

Table 3: Assessment by points.

It turns out that the Cheap configuration has to be considered for the
final decision, whereas the Cheapest configuration being second best. The
Network configuration performs also well for the large test case and might

REFERENCES 16

even win the competition (for the large test case) if communication becomes
more important. This may happen either

e if the processor speed increases,
o if less “high level” parallelism is available, or

e if smaller problems have to be solved. In this case the ratio of commu-
nication to computation is increased.

The other configurations perform rather poor, mainly because of a lack of
raw compute power, since they have fewer processors.

Conclusion

The cluster evaluator CLUE has been demonstrated to be an efficient tool
for finding optimum PC cluster configurations for given parallel applications
and budget limits.

References

[1] R. Aversa, A. Mazzeo, N. Mazzocca, U. Villano, Heterogeneous system per-
formance prediction and analysis using PS. IEEE Concurrency 6-3 (1998),
pp- 20-29.

[2] J. Bilmes, K. Asanovic, C.-W. Chin, J. Demmel, Optimizing Matrix Multiply
using PHIPAC: a Portable, High-Performance, ANSI C Coding Methodol-
ogy, Proceedings of the 1997 International Conference on Supercomputing in
Vienna, Austria, ACM Press, New York, 1997, pp. 340-347.

[3] P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-Potential, Linearized
Augmented Plane Wave Programs for Crystalline Systems, Comp. Phys.
Commun. 59 (1990), pp. 399-415.

[4] T. Delaitre, G.R. Justo, F. Spies, S. Winter, Simulation Modelling of Paral-
lel Systems. In Proceedings of the 1st Austrian-Hungarian Workshop on Dis-
tributed and Parallel Systems. Technical Report KFKI-1996-09/M,N, Hun-
garian Academy of Sciences, 1996.

[6] J.J. Dongarra, R. van de Geijn, Two-dimensional Basic Linear Algebra Com-
munication Subprograms, LAPACK Working Note 37, 1991.

[6] J.J. Dongarra, R.C. Whaley, A User’s Guide to the BLACS Version1.1,
LapAck Working Note 94, 1995.

REFERENCES 17

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

A. Ferscha, J. Johnson, Performance prototyping of parallel applications in
N-MAP, Proceedings of the IEEE Second Int. Conference on Algorithms and
Architectures for Parallel Processing, IEEE CS Press 1996, pp. 84-91.

M. Frigo, A Fast Fourier Transform Compiler, Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and Imple-
mentation in Atlanta, Georgia, ACM Press, New York, 1999, pp. 169-180.

M. Frigo, S. G. Johnson, The Fastest Fourier Transform in the West, Technical
Report MIT-LCS-TR-728, MIT Laboratory for Computer Science, 1997.

E. Haunschmid, D. Kvasnicka, High Performance Computing in Material
Sciences. Maximizing Cache Utilization without Increasing Memory Require-
ments, Technical Report AURORA TR1998-17, Vienna University of Tech-
nology, 1998.

J. Labarta etal., Dip: A parallel program development environment, Pro-
ceedings of Euro-Par ’96, Vol. I, Springer-Verlag, Berlin Heidelberg New York
1996, pp. 665—-674.

W. Mohr, A. Malony, K. Shanmugam, SPEEDY: An integrated performance
extrapolation tool for PC++. Proceedings of the Joint Conf. Performance
Tools 95 and MMB 95, Springer-Verlag, Berlin Heidelberg New York 1995.

M. Rosenblum, E. Bugnion, S. Devine, S. Herrod, Using the SIMOS Machine
Simulator to Study Complex Computer Systems. ACM TOMACS Special
Issue on Computer Simulation, 1997.

R. C. Whaley, J. J. Dongarra, Automatically Tuned Linear Algebra Software,
LAaprAck Working Note 131, 1997.

J. Yan, S. Sarukkai, P. Mehra, Performance measurement, visualization and
modeling of parallel and distributed programs using the AIMS toolkit. Soft-
ware Practice and Experience 25-4 (1995), pp. 429-461.

XXX, CLUE—Cluster Evaluation, Technical Report, 2000.

XXX, Developing Architecture Adaptive Algorithms using Simulation with
MISS-PVM for Performance Prediction, 1997.

