
HPF and Numerical Libraries?

Harald J. Ehold1, Wilfried N. Gansterer2, Dieter F. Kvasnicka3, and
Christoph W. Ueberhuber2

1 VCPC, European Centre for Parallel Computing at Vienna
ehold@vcpc.univie.ac.at

2 Institute for Applied and Numerical Mathematics, Vienna University of Technology
ganst@aurora.tuwien.ac.at, christof@uranus.tuwien.ac.at

3 Institute for Physical and Theoretical Chemistry, Vienna University of Technology
dieter@titania.tuwien.ac.at

Abstract. Portable and efficient ways for calling numerical high per-
formance software libraries from HPF programs are investigated. The
methods suggested utilize HPF’s EXTRINSIC mechanism and are inde-
pendent of implementation details of HPF compilers. Two prototypical
examples are used to illustrate these techniques. Highly optimized Blas
routines are utilized for local computations: (i) in parallel multiplication
of matrices, and (ii) in parallel Cholesky factorization. Both implemen-
tations turn out to be very efficient and show significant improvements
over standard HPF implementations.

1 Introduction

High Performance Fortran (HPF [11]) is one of the most interesting approaches
for high-level parallel programming. In particular, it provides very convenient
ways for specifying data distributions and for expressing data parallelism. De-
velopment of parallel code using HPF is much easier and requires less effort than
message passing programming, for example, using MPI.

However, in numerical applications the performance achieved with HPF pro-
grams is often disappointing compared to message passing code. This is partly
due to the immaturity of HPF compilers, which can be explained by the difficul-
ties to implement the advanced features of HPF efficiently. There is, however,
another important aspect, which is often ignored. In order to achieve high per-
formance it is crucial to integrate highly optimized library routines into HPF
code.

Much effort has been spent on developing highly efficient implementations of
the Basic Linear Algebra Subroutines (Blas [12,7,8]) and on numerical libraries
for dense linear algebra which use the Blas as building blocks. Important ex-
amples are Lapack [1], which is the standard sequential library for dense or
banded linear algebra methods, and parallel libraries such as ScaLapack [4] or
PLapack [10]. Recently, code generation tools have been developed (see Bilmes
? This work was supported by the Special Research Program SFB F011 “AURORA”

of the Austrian Science Fund FWF.

P. Zinterhof, M. Vajteršic, A. Uhl (Eds.): ACPC’99, LNCS 1557, pp. 140–152, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



HPF and Numerical Libraries 141

et al. [2], Whaley, Dongarra [15]) which automatically find the best choice of
hardware dependent parameters for an efficient implementation of the Blas.

The integration of such software into HPF is crucial for several reasons:

– In many scientific applications a lot of programming effort can be saved by
using existing library routines as building blocks instead of (re-)coding them
in HPF directly.

– A considerable amount of expertise has been incorporated into high quality
software packages like the ones mentioned above. It is hardly possible to
achieve comparable floating-point performance when coding in HPF directly.
Even if a problem is well suited for an HPF implementation, the success of
such an attempt heavily relies on the maturity of HPF compilers, which
cannot be taken for granted at present (see Ehold et al. [9]).

– When standard numerical operations are coded in HPF the resulting code
often suffers from poor local performance. Thus, one of the key issues is to
optimize local performance in order to improve overall parallel performance.

– Highly optimized Blas implementations are available for most target sys-
tems. Therefore, the use of Blas routines for local computations ensures
performance portability.

– Usually the main motivation for parallelization is performance improvement.
It is essential to optimize the sequential code first in order to be able to
measure the benefits of parallelization in a clean way. The sequential opti-
mization typically involves restructuring the code, for example, by increasing
the fraction of Level 3 (matrix-matrix) operations and by using appropriate
Blas 3 routines (or other high performance library routines) wherever pos-
sible. Thus, when the parallelization is done by using HPF, the necessity of
combining the Blas (and other numerical packages and libraries) with HPF
arises quite naturally.

For all of these reasons the goal of this paper is to investigate ways to utilize
high performance numerical libraries in an HPF context.

The basic facility provided by HPF for integrating procedures from other
programming languages or models is the EXTRINSIC mechanism (HPF Fo-
rum [11]). This paper describes various methods, at different levels of abstrac-
tion, for calling existing library routines from HPF using this mechanism.

The techniques described are portable in the sense that they only rely on
features from the HPF standard [11] and, additionally, on three of the HPF2.0
Approved Extensions. In particular, the required HPF features are:

– an advanced form of the ALIGN directive, namely
ALIGN A(j,*) WITH B(j,*) (replication of A along one dimension of B);

– the INHERIT directive;
– EXTRINSIC(HPF LOCAL) subroutines;
– EXTRINSIC(F77 LOCAL) and EXTRINSIC(F77 SERIAL) subroutines.

Unfortunately, some HPF compilers do not yet support all of these features.
The main ideas and basic concepts presented in this paper are applicable to

many numerical algorithms in dense linear algebra, but their implementation will



142 Harald J. Ehold et al.

differ in various technical details. For the purpose of illustration two operations,
which arise very frequently at the core of numerous scientific applications, serve
as prototypes: Matrix-matrix multiplication and, representing more complicated
numerical algorithms, Cholesky factorization.

In Section 2 ways for integrating sequential library routines into HPF code
are suggested for these two operations. Section 3 gives an overview of techniques
that have been used to interface HPF to the ScaLapack parallel library. In
both cases experiments have been performed which demonstrate the considerable
performance gains arising from the use of the techniques suggested.

2 Calling Sequential Routines from HPF

The topic of this section is the integration of extrinsic library routines into
an HPF program for local computations only. All of the communication in the
multiprocessor environment is organized by the HPF compiler.

A matrix-matrix multiplication routine (Section 2.1) and a Cholesky factor-
ization routine (Section 2.2) were implemented. Both utilize the Blas for local
computations. Experiments were performed with the HPF compiler from PGI,
pghpf , version 2.4, on a Meiko CS-2 and an IBM SP2. The CS-2 experiments
used a standard Fortran implementation of the Blas (Libblas), compiled with
the pgf77 Fortran77 compiler from PGI, and Blas routines generated by the
Atlas package (Whaley, Dongarra [15]). On the SP2 the vendor optimized Blas
routines were utilized.

2.1 Multiplication of Matrices

As a first example, the computation of the product C ∈ R
m×n of two matrices

A ∈ R
m×l , B ∈ R

l×n is considered where all matrices can have arbitrary distribu-
tions. An HPF routine called par dgemm (parallel BLAS/dgemm) was developed,
which performs the matrix-matrix multiplication. Internally, this operation is
split up into local operations on subblocks, each of which is performed by calling
the general matrix multiplication routine BLAS/dgemm.

In the general case, the multiplication of two distributed matrices involves
non-local computations. Some of the data have to be replicated over several
processors in order to localize all of the computations involved.

Loop Orders. The central operation in matrix-matrix multiplication is

C(i, j) = C(i, j) + A(i, k)B(k, j),

where i = 1, 2, . . . , m, j = 1, 2, . . . , n, and k = 1, 2, . . . , l. Permuting the order of
these three loops yields different algorithmic variants with different characteris-
tics with respect to parallelization (and consequently, different requirements for
expressing parallelism). The basic differences relevant to parallelization are as
follows, where the variants are labeled by the index of the outermost loop.



HPF and Numerical Libraries 143

k∗ variant: The two inner loops perform the outer product of a column of A
and a row of B. Since the entire matrix C is updated in place at every step
of the outer loop, this variant exhibits no communication requirements for
elements of C. Computation of a local block of C requires the corresponding
parts of the columns of A and of the rows of B. In order to localize all of
the computations, the columns of A have to be replicated in the direction of
the rows of C, and the rows of B have to be replicated in the direction of
the columns of C.

i∗ variant: The two inner loops compute a row of C by multiplying the cor-
responding row of A with the columns of B. In this case it is usually most
efficient to parallelize over both dimensions of the matrix B. This, however,
requires distributed reduction operations for the elements of C.

j∗ variant: The two inner loops compute a column of C by multiplying rows
of A with the corresponding column of B. In this case it is usually most
efficient to parallelize over both dimensions of the matrix A. This again
requires distributed reduction operations for the elements of C.

The k∗ variant requires the smallest amount of local storage without extra
communication for the elements of C. This variant is well suited to a two-
dimensional distribution of array C, whereas for the other two variants either a
one-dimensional data distribution is to be preferred (columnwise for the i∗ vari-
ant, rowwise for the j∗ variant) or extra communication needs to be performed
for the elements of C.

For load balancing reasons two-dimensional data distributions are normally
used in linear algebra algorithms. In such a setup, the k∗ variant exhibits the
best data locality, minimizes the amount of data to be replicated, and leads to
the most efficient parallelization. Consequently, it was chosen for the implemen-
tation.

Implementation. For performance reasons, a blocked version of matrix-matrix
multiplication (Ueberhuber [14]) was implemented. Two levels of wrapper rou-
tines are involved. The programmer calls the HPF routine par dgemm, which
takes the matrices A, B as input and returns the product matrix C.

In this routine the HPF LOCAL routine local dgemm is called inside a loop.
In addition to the blocks involved local dgemm also takes their size (the block
size of the algorithm) as an argument and performs the local outer products of
a block column of A and a block row of B by calling the routine BLAS/dgemm.

In par dgemm, work arrays for a block column of A and for a block row
of B are aligned properly with C, and then the corresponding subarrays of A
and B are copied there. This copying operation adjusts the distribution of the
currently required parts of A and B to that of C. This copying is the only place
where inter-processor communication occurs. It has the advantage of making
the procedure fully independent of the prior distributions of A and B. All of the
necessary communication, which is entirely contained in the copying operation,
is restricted to the outermost loop.



144 Harald J. Ehold et al.

Experiments. Fig. 1 illustrates the floating-point performance of par dgemm
and the vendor supplied intrinsic (parallel) function MATMUL for multiplying
two n× n matrices on 16 processors of a Meiko CS-2. A and B were distributed
cyclically in both dimensions, and C was distributed block-cyclically with block
size 20 in both dimensions.

MATMUL
par dgemm

par dgemm using Atlas

E�ciency Floating-Point Performance MFlop/s

Matrix order n

1600140012001000800600400200

100%

80%

60%

40%

20%

0%

800

700

600

500

400

300

200

100

0

Fig. 1. Matrix multiplication on 16 processors of a Meiko CS-2. “Efficiency”
denotes the percentage of the peak-performance achieved.

A considerable performance improvement of par dgemm over MATMUL is
evident for matrix orders n > 500 (roughly by a factor of 2 using the Libblas,
respectively 5 using the Atlas-Blas). This holds for other distribution scenarios
as well.

linear

par dgemm
par dgemm using Atlas

Speedup

Number of processors p

1612841

16

12

8

4

1

Fig. 2. Matrix multiplication on p processors for n = 1000 on a Meiko CS-2.



HPF and Numerical Libraries 145

Moreover, for large matrix orders n the efficiency of par dgemm improves,
whereas the efficiency of the MATMUL routine decreases. The Atlas generated
BLAS/dgemm shows significant improvements in efficiency, especially for large
matrices. It is important to keep in mind that 16 processors were used in the
test run and that larger local blocks result in better utilization of the Blas.

In order to evaluate parallel speedup (see Fig. 2), the runtime of the routine
par dgemm respectively par dgemm using Atlas on one processor was used as a
reference value. The parallel speedup for up to 8 processors is quite the same for
both par dgemm routines. On more processors the Atlas version does not scale
so good anymore because the time for computation per processor is already so
small that the communication becomes dominant.

Fig. 3 gives the efficiency on 1 to 16 processors of par dgemm and MATMUL
running on an IBM SP2. On the SP2 par dgemm is based on the highly optimized
ESSL/dgemm routine. The performance of par dgemm scales reasonably well as
long as the workload can be balanced well. MATMUL shows a very poor per-
formance. MATMUL running on 16 processors of an IBM SP2 achieves a lower
floating-point performance than ESSL/dgemm running on one processor. In this
experiment it was not possible to test MATMUL running on one processor due
to memory limitations.

MATMUL

par dgemm using ESSL/dgemm

Floating-Point E�ciency

Number of processors p

168421

100%

80%

60%

40%

20%

0%

Fig. 3. Matrix multiplication on p processors for n = 2000 on an IBM SP2.

2.2 Cholesky Factorization

Even if the HPF compiler does a good job with organizing data distribution
and communication between processors, the performance achieved can be disap-
pointingly low due to bad node performance. Experiments have been performed
with several HPF implementations of the same algorithm for computing the
Cholesky factorization A = LL> of a real symmetric positive definite matrix.



146 Harald J. Ehold et al.

As shown in Table 1, using the sequential Blas-based Cholesky factorization
LAPACK/dpotrf is up to 12 times faster than the best scaling HPF code (Version
1) on one processor and still 1.3 times faster than this code on 16 processors.
The HPF code which yields best sequential performance (Version 2) does not
show any parallel speedup.

Table 1. Cholesky factorization of a matrix of order 1000, using the vendor
optimized routine LAPACK/dpotrf running on one processor only, and two HPF
versions on a Meiko CS-2.

p 1 2 4 8 16

LAPACK/dpotrf 9 s

HPF Version 1 113 s 57 s 29 s 18 s 12 s

HPF Version 2 36 s 43 s 45 s 45 s 46 s

Utilizing BLAS Routines. One way of improving the nodal performance in
HPF is to use the Blas for doing the local computation on each node. The
blocked algorithm for computing the factor L of the Cholesky factorization ex-
hibits better locality of reference and is therefore to be preferred over the un-
blocked version on modern computer architectures (Anderson et al. [1], Ueber-
huber [14]). A very important operation to be performed is the multiplication of
certain submatrices of A.

The principle step of the blocked version of the Cholesky factorization is the
following (see also Fig. 4):

(
A11 A12

A21 A22

)
=

(
L11 0
L21 L22

) (
L>

11 L>
21

0 L>
22

)
=

(
L11L

>
11 L11L

>
21

L21L
>
11 L21L

>
21 + L22L

>
22

)
.

This step requires the following three tasks.

1. Factorize A11 = L11L
>
11 using LAPACK/dpotrf.

2. Solve the linear system L21L
>
11 = A21 for L21 using BLAS/dtrsm.

3. Multiply L21L
>
21 using BLAS/dgemm and continue recursively with

A22 − L21L
>
21 = L22L

>
22.

In the HPF version the first task is done sequentially on one processor by us-
ing the HPF extrinsic kind F77 SERIAL, but the subsequent steps (BLAS/dtrsm
and BLAS/dgemm) are parallelized. For simplicity it is assumed that the block size
b divides the dimension of the matrix n evenly, where n is the size of the leading
dimension of matrix A. The distribution chosen for the symmetric matrix A is
(CYCLIC(b),∗). The one-dimensional distribution was chosen to avoid commu-
nication within rows.



HPF and Numerical Libraries 147

already computed

BLAS/dpotrf (A11)

BLAS/dtrsm (A21)

BLAS/dgemm (A22)

Fig. 4. Update areas of blocked Cholesky factorization.

Using HPF LOCAL. The extrinsic kind HPF LOCAL refers to procedures
implemented in the HPF language, but in the local programming model. Its
code is executed locally per processor and this gives the possibility to do local
computations by calling the sequential Blas routines.

In the parallel version, BLAS/dtrsm is called on each processor that owns
local data of the block A21 (see Fig. 5). Hence in the example shown in Fig. 5
(two processors P1 and P2) there are two calls to BLAS/dtrsm. In this example
processor P1 owns blocks B1 and B3 and needs block A11 and processor P2
owns block B2 and also owns already block A11. Since block A11 is needed by all
participating processors it is broadcast to all of them. The block size on distinct
processors can differ. For that a mechanism for determining the correct size of
the local array is needed. Inside the HPF LOCAL routine the intrinsic function
SIZE gives the desired information that can be used by the Blas routine.

A

21A

3

2

1B

B

B

P1

P1

P2

P1

P2 11

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Fig. 5. Local blocks in parallel blocked Cholesky factorization.

The HPF LOCAL version calls BLAS/dtrsm as an HPF LOCAL routine by
passing the appropriate array section to the subroutine. This section of the array
needs to be passed to the HPF LOCAL routine without changing the distribu-
tion of the array at the procedure boundary. In this paper two different methods
were investigated to achieve this, using INHERIT or TEMPLATES, which are



148 Harald J. Ehold et al.

both portable between all HPF compilers that support the core HPF2.0 lan-
guage.

1. The natural way to do this is using the INHERIT directive in the interface
and the declaration of the HPF LOCAL routine. INHERIT tells the com-
piler that an array and hence also subsections of this array have the same
distribution in the subroutine as in the calling routine.

2. If an HPF compiler does not yet support INHERIT then TEMPLATES can
be used to ensure that the distribution of array sections is not changed at a
procedure boundary.

The drawback of this second version is that two additional arguments occur
which are only needed for specifying the proper size and distribution of the
template in the interface. One parameter gives the size of the first dimension of
the array in the calling routine. This value is used to declare a TEMPLATE in
the interface of the callee that has the same size and distribution as the starting
array. A second parameter gives the starting point of the array section passed
to the subroutine. With this information the dummy argument can be aligned
to the corresponding part of the starting array via the use of the TEMPLATE.

Using F77 LOCAL. The extrinsic kind F77 LOCAL refers to procedures
that are implemented in Fortran77 and in the local programming model. This
suggests that F77 LOCAL is the natural choice for combining HPF with the
Blas, which use Fortran 77 calling conventions. However, since the Fortran 90
intrinsic function SIZE is typically not supported within a F77 LOCAL subrou-
tine, different techniques have to be used for determining the size of local arrays.
Another problem with this EXTRINSIC mechanism is that it is not clearly de-
fined in the HPF standard (HPF Forum [11]), so there can be variations in the
implementation details between different HPF compilers. For the HPF compiler
used on the Meiko CS-2, INHERIT is not fully supported with F77 LOCAL, so
no performance results can be given for this version.

Experiments. Runtimes on the Meiko CS-2 were the same for the HPF LOCAL
version using TEMPLATES as for the INHERIT version. For that reason Fig. 6
shows just one “HPF+Blas” curve.

The sequential routine LAPACK/dpotrf was benchmarked on one processor.
The efficiency values for p ≥ 2 processors were determined by simply dividing
the single-processor value by p.

On one processor the superiority of the HPF+Blas versions over the pure
HPF code can be seen. ATLAS-LAPACK/dpotrf yields very high efficiency on one
processor. For an increasing number of processors a decreasing efficiency is to be
observed. This phenomenon is due to the relatively small problem size (n = 2000)
giving bad workload balancing for a one-dimensional processor distribution.



HPF and Numerical Libraries 149

LAPACK/dpotrf
ATLAS-LAPACK/dpotrf

pure HPF
HPF+Blas

HPF+Atlas-Blas

Floating-Point E�ciency

Number of processors p

168421

100%

80%

60%

40%

20%

0%

Fig. 6. Efficiency of the Cholesky factorization of a matrix of order n = 2000 on
a Meiko CS-2.

3 Calling Parallel Libraries from HPF

As an alternative to the approach described in the previous section, extrinsic
parallel library routines such as ScaLapack [4] and PLapack [10] can be in-
voked from HPF for distributed computations. In this case, the extrinsic library
procedure itself performs communication as well as computation, and HPF is
used as a framework for conveniently distributing data and for organizing high-
level parallelism. Calling distributed library routines from HPF mainly involves
the issue of passing distribution information from HPF to the library routines.

This section gives a brief survey of techniques that have been used to interface
HPF to the ScaLapack parallel library.

3.1 Interfacing ScaLAPACK via EXTRINSIC Functions

Blackford et al. [5] have developed an interface called SLHPF from HPF to the
ScaLapack package [4]. This interface uses three layers of wrapper routines:
(i) global HPF routines, which call (ii) HPF LOCAL routines, which in turn call
(iii) Fortran77 routines, which take local assumed-size arrays as arguments. The
first version of the SLHPF interface contains HPF wrapper routines for LU
and Cholesky factorization, and for the level 3 Blas routines BLAS/dgemm and
BLAS/dtrsm, among others.

The wrapper routines do not have a significant influence on the execution
time (see Blackford et al. [5]). Thus most of the total computation time is spent
in ScaLapack routines.

Unfortunately, at the time the present work was performed (August 1998),
the SLHPF interface did not work in conjunction with the particular HPF com-
pilers available on our Meiko CS-2 platform. Therefore, to give some indication
of the expected HPF-ScaLapack performance, Table 2 shows the performance



150 Harald J. Ehold et al.

of the ScaLapack Cholesky factorization routine called from Fortran77 on the
Meiko CS-2. In order to utilize the highly optimized Sunperf library, a different
compiler (SUN F77) was used than in the experiments of Section 2.

Since the overhead of the SLHPF wrapper routines is small (see Blackford
et al. [5]), we expect to achieve nearly the same performance when calling ScaLa-
pack from HPF via the SLHPF interface. Note that the observed efficiencies are
comparable with those obtained using HPF with Blas routines optimized with
Atlas (see Fig. 6).

Table 2. Performance and efficiency of the Cholesky factorization on p =
1, 2, . . . , 16 processors of a Meiko CS-2 using the Sunperf library and ScaLa-
pack. The matrix size was n = 1000.

Processor Performance [Mflop/s]

p Grid Time Speedup Peak Observed Efficiency

1 1×1 11.9 s — 50 28 56 %
2 2×1 6.3 s 1.9 100 53 53 %
4 2×2 3.8 s 3.1 200 88 44 %
8 4×2 1.9 s 6.3 400 175 44 %

16 8×2 1.3 s 9.2 800 256 32 %

Lorenzo et al. [13] developed another interface from HPF to ScaLapack. In
this interface, to call the PBlas routine Pdgemm, for example, an HPF wrapper
routine HPF Pdgemm is called. This sets up the array descriptors of the Blacs
(Basic Linear Algebra Communication Subprograms) using the HPF library
function HPF DISTRIBUTION, broadcasts this information to all processors, and
then calls the PBlas routine Pdgemm as an EXTRINSIC (F77 LOCAL) routine.

It should be noted that these interfaces from HPF to parallel libraries should
also be useful for converting existing sequential numerical libraries to HPF. In
many cases it should suffice to replace calls to sequential Blas or Lapack rou-
tines in the Fortran77 code by calls to PBlas or ScaLapack routines in the
HPF version.

There are, however, two possible sources of difficulty in interfacing HPF to
parallel libraries:

– If the HPF compiler is not based on MPI, the initialization of the message
passing library is difficult (Blackford et al. [4]). In this case, PVM may be
used. PVM computation nodes may also be started and initialized during
runtime, independent of the HPF runtime system.

– If the backend compiler is not the standard compiler of a given platform,
incompatibilities with the optimized Blas libraries may occur.



HPF and Numerical Libraries 151

3.2 ScaLAPACK Implemented in an HPF Runtime System

The public domain HPF compilation system Adaptor (Brandes and Greco [6])
contains an interface to ScaLapack. The interface is implemented directly in
the HPF runtime system using the language C. This approach offers the following
advantages.

– A more flexible redistribution strategy is possible.
– Subsections of arrays can be used without creating temporary arrays.
– Overhead resulting from the conversion of the array descriptors from HPF

to PBlas is reduced.

However, portability is reduced due to the proprietary implementation.

4 Conclusions

It has been shown that existing numerical high performance libraries can be
integrated into HPF code in a portable and efficient way, using HPF language
features only. In particular, it is possible to implement parallel Blas on top of
the sequential Blas. This guarantees high local performance in HPF programs
and yields significant performance improvements compared to pure Fortran im-
plementations which do not take advantage of existing software packages and
libraries.

Most high level linear algebra libraries are based on the Blas. By invoking
a parallelized Blas version implemented along the lines suggested in this paper,
these libraries can also be utilized within HPF programs.

Acknowledgments. We would like to thank John Merlin (VCPC, Vienna) for
his helpful comments, his experienced interpretation of the HPF standard, and
for proofreading the paper.

References

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen: Lapack
User’s Guide, 2nd ed. SIAM Press, Philadelphia 1995.

2. J. Bilmes, K. Asanovic, C.-W. Chin, J. Demmel, Optimizing Matrix Multiply using
PhiPac: a Portable, High-Performance, ANSI C Coding Methodology, Proceedings
of the International Conference on Supercomputing, ACM, Vienna, Austria, 1997,
pp. 340–347.

3. J. Bilmes, K. Asanovic, J. Demmel, D. Lam, C.-W. Chin, Optimizing Matrix Mul-
tiply using PhiPac: a Portable, High-Performance, ANSI C Coding Methodology,
Technical report, Lapack Working Note 111, 1996.

4. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C.
Whaley: ScaLapack Users’ Guide, SIAM Press, Philadelphia 1997.



152 Harald J. Ehold et al.

5. L. S. Blackford, J. J. Dongarra, C. A. Papadopoulos, and R.C. Whaley: Installation
Guide and Design of the HPF 1.1 Interface to ScaLapack, SLHPF, LAPACK
Working Note 137, University of Tennessee 1998.

6. T. Brandes and D. Greco: Realization of an HPF Interface to ScaLapack with Re-
distributions. High-Performance Computing and Networking. International Con-
ference and Exhibition, Springer-Verlag, Berlin Heidelberg NewYork Tokyo 1996,
pp. 834–839.

7. J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson: An Extended Set of
Blas, ACM Trans. Math. Software 14 (1988), pp. 18–32.

8. J. J. Dongarra, J. Du Croz, S. Hammarling, I. Duff: A Set of Level 3 Blas, ACM
Trans. Math. Software 16 (1990), pp. 1–17.

9. H. J. Ehold, W.N. Gansterer, and C. W. Ueberhuber: HPF—State of the Art,
Technical Report AURORA TR1998-01, European Centre for Parallel Computing
at Vienna, Vienna 1998.

10. R. van de Geijn: Using PLapack: Parallel Linear Algebra Package, MIT Press
1997.

11. High Performance Fortran Forum: High Performance Fortran Language Specifica-
tion Version 2.0, 1997.
URL: www.crpc.rice.edu/HPFF/hpf2/ or
www.vcpc.unvie.ac.at/information/mirror/HPFF/hpf2/.

12. C. L. Lawson, R. J. Hanson, D. Kincaid, F.T. Krogh: Blas for Fortran Usage,
ACM Trans. Math. Software 5 (1979), pp. 63–74.

13. P.A.R. Lorenzo, A. Müller, Y. Murakami, and B. J. N. Wylie: HPF Interfacing
to ScaLapack, Third International Workshop PARA ’96, Springer-Verlag, Berlin
Heidelberg NewYork Tokyo 1996, pp. 457–466.

14. C.W. Ueberhuber: Numerical Computation, Springer-Verlag, Berlin Heidelberg
NewYork Tokyo 1997.

15. R.C. Whaley, J. J. Dongarra, Automatically Tuned Linear Algebra Software, Tech-
nical Report, Lapack Working Note 131, 1997.


	Introduction
	Calling Sequential Routines from HPF
	Multiplication of Matrices
	Cholesky Factorization

	Calling Parallel Libraries from HPF
	Interfacing ScaLAPACK via EXTRINSIC Functions
	ScaLAPACK Implemented in an HPF Runtime System

	Conclusions

